
1/59

When Combinatorics and Flow Networks Intersect

Gerald Huang

UNSW Computer Science and Engineering Society,
UNSW Competitive Programming and Mathematics Society

March 28, 2023

2/59

G’day!

• About me: Sixth year Computer Science / Mathematics
student, specialising in algorithm design, computational
complexity theory, combinatorics, number theory, and graph
theory.

• I like:
• Ruining my sleep schedule from time to time.
• Teaching and learning about new things.

• Nom nom.

2/59

G’day!

• About me: Sixth year Computer Science / Mathematics
student, specialising in algorithm design, computational
complexity theory, combinatorics, number theory, and graph
theory.

• I like:
• Ruining my sleep schedule from time to time.
• Teaching and learning about new things.

• Nom nom.

3/59

Introduction to Maximum Flow
Maximum Flow Algorithms
Maximum Flow-Minimum Cut Theorem

The Combinatorial Results
Hall’s Marriage Theorem
Dilworth’s Theorem
Menger’s Theorem

4/59

Introduction to Maximum Flow

5/59

Introduction to Maximum Flow

A flow network is a directed and weighted graph G = (V , E),
where each edge (u, v) ∈ E has a weight wu,v . This is called the
capacity.

s

u

v

x

y

t

2

5

4

2

3
2

5

4

1

6/59

The Maximum Flow Problem

• Given a flow network, how much flow can we send from s to t
assuming we have an infinite supply in s?

s

u

v

x

y

t

2

5

2/4

2

3
2

5

2/4

1

Maximum flow: 7.

7/59

Ford-Fulkerson

• Try as many paths as possible!
• Find s − t paths and send flow down the path.
• When updating flows and capacities, send flow back an edge.

8/59

s

u

v

t

3

2

2

3

5

9/59

s

u

v

t

3/3

2

2

3/3

3/5

Flow: 3. Hmmm… can we do better?

9/59

s

u

v

t

3/3

2

2

3/3

3/5

Flow: 3.

Hmmm… can we do better?

9/59

s

u

v

t

3/3

2

2

3/3

3/5

Flow: 3. Hmmm… can we do better?

10/59

s

u

v

t

3/3

2/2

2/2

3/3

1/5

Flow: 5. So… what went wrong?

10/59

s

u

v

t

3/3

2/2

2/2

3/3

1/5

Flow: 5.

So… what went wrong?

10/59

s

u

v

t

3/3

2/2

2/2

3/3

1/5

Flow: 5. So… what went wrong?

11/59

Ford-Fulkerson

• We need a way to “undo” flow.

• We can denote the amount of flow we can send back with an
arrow in the reverse direction.

• Keep finding s − t paths this way until no more paths are
available.

11/59

Ford-Fulkerson

• We need a way to “undo” flow.
• We can denote the amount of flow we can send back with an

arrow in the reverse direction.
• Keep finding s − t paths this way until no more paths are

available.

12/59

s

u

v

t

3

2

2

3

5

13/59

s

u

v

t

3/3

2

2

3/3

3/5

14/59

s

u

v

t

3/3

2

2

2/3

2/3

15/59

s

u

v

t

3/3

2

2/2

1/3

1/5

16/59

s

u

v

t

3/3

2/2

2/2

3/3

1/5

17/59

s

u

v

t

3/3

2/2

2/2

3/3

1/5

Terminate with maximum flow of 5.

18/59

Ford-Fulkerson

• Note that there are finite many paths from s to t ; therefore, the
algorithm must terminate.

• Every time we “reuse” an edge, we send flow back to try for a
better s − t path.

• The final output of the Ford-Fulkerson algorithm is a set of
“saturated” edges which correspond to the edges that are used
in the maximum flow of the flow network.

• Running time: O (|E | · |f |), where |f | is the flow of the graph.

19/59

Other algorithms

Other algorithms exist that solve the Maximum Flow problem with
various running times.

• Edmonds-Karp – special modification of Ford-Fulkerson:
O (|E | ·min{|V | · |E |, |f |}).

• Dinic’s algorithm – O (|V |2 · |E |).
• Preflow push algorithm – O (|V |2 · |E |).

20/59

Maximum Flow-Minimum Cut

Cuts in a Flow Network
A cut in a flow network is a partition of vertices into two sets S and
T such that:

• S ∪ T = V .
• S ∩ T = ∅.
• s ∈ S , t ∈ T .

The cut splits the graph into two parts such that s and t are
completely separated!

Capacity of a cut
The capacity of a cut is the sum of the capacity of the edges that
“pass” through the cut in the forward direction (i.e. a directed edge
from u ∈ S to v ∈ T).

20/59

Maximum Flow-Minimum Cut

Cuts in a Flow Network
A cut in a flow network is a partition of vertices into two sets S and
T such that:

• S ∪ T = V .
• S ∩ T = ∅.
• s ∈ S , t ∈ T .

The cut splits the graph into two parts such that s and t are
completely separated!

Capacity of a cut
The capacity of a cut is the sum of the capacity of the edges that
“pass” through the cut in the forward direction (i.e. a directed edge
from u ∈ S to v ∈ T).

20/59

Maximum Flow-Minimum Cut

Cuts in a Flow Network
A cut in a flow network is a partition of vertices into two sets S and
T such that:

• S ∪ T = V .
• S ∩ T = ∅.
• s ∈ S , t ∈ T .

The cut splits the graph into two parts such that s and t are
completely separated!

Capacity of a cut
The capacity of a cut is the sum of the capacity of the edges that
“pass” through the cut in the forward direction (i.e. a directed edge
from u ∈ S to v ∈ T).

21/59

s

u

v

x

y

t

2

5

4

2

3
2

5

4

1

Capacity of cut: 6.

22/59

Maximum Flow-Minimum Cut Theorem

Maximum Flow-Minimum Cut Theorem
The maximum flow of a flow network corresponds to the minimum
capacity cut of the flow network.

23/59

Maximum Flow-Minimum Cut Theorem

s

u

v

x

y

t

2

5

4

2

3
2

5

4

1

• All s − t paths must pass through the red edges.
• Minimum cut – limits the amount of flow that can be sent to

these edges.
• Maximum flow – must send flow along the edges along the

minimum cut.

24/59

The Combinatorial Results

25/59

General structure of the theorems

Given a structure, the maximum of A corresponds to the minimum
of B.

Given a flow network F , the maximum flow of F corresponds to the
minimum cut of F .

It turns out there are many other theorems that have this same
shape!

26/59

Hall’s Marriage Theorem

Let F be a family (or collection) of sets and let X be the union of
elements in all sets of F .

Transversal of a set
We say that a subset S ⊆ X is a transversal for F if S is comprised of
one element from each set in F .

In other words, for each set F in F , pick one element from F to
represent the set.

27/59

Hall’s Marriage Theorem

When does a transversal exist? Let’s consider a subcollection G of
sets in F .

• Assign an element from S to represent a set in G.

Hmm… assigning an element directly from S might not give us the
right assignment because we could accidentally choose an element
that doesn’t appear in any set in G. Oops…
Let’s fix this!

27/59

Hall’s Marriage Theorem

When does a transversal exist? Let’s consider a subcollection G of
sets in F .

• Assign an element from S to represent a set in G.

Hmm… assigning an element directly from S might not give us the
right assignment because we could accidentally choose an element
that doesn’t appear in any set in G. Oops…
Let’s fix this!

27/59

Hall’s Marriage Theorem

When does a transversal exist? Let’s consider a subcollection G of
sets in F .

• Assign an element from S to represent a set in G.

Hmm… assigning an element directly from S might not give us the
right assignment because we could accidentally choose an element
that doesn’t appear in any set in G. Oops…
Let’s fix this!

28/59

Hall’s Marriage Theorem

Let’s try again!
When does a transversal exist? Let’s consider a subcollection G of
sets in F . We denote Y to be the set of elements that belong to at
least one set in G.

• Assign an element from Y to represent a set in G.

We now have limited our choice of elements to all elements that
belong in some set in G. However, what if we don’t have enough
elements?

28/59

Hall’s Marriage Theorem

Let’s try again!
When does a transversal exist? Let’s consider a subcollection G of
sets in F . We denote Y to be the set of elements that belong to at
least one set in G.

• Assign an element from Y to represent a set in G.

We now have limited our choice of elements to all elements that
belong in some set in G. However, what if we don’t have enough
elements?

28/59

Hall’s Marriage Theorem

Let’s try again!
When does a transversal exist? Let’s consider a subcollection G of
sets in F . We denote Y to be the set of elements that belong to at
least one set in G.

• Assign an element from Y to represent a set in G.

We now have limited our choice of elements to all elements that
belong in some set in G. However, what if we don’t have enough
elements?

29/59

Let’s enforce that! If a transversal exists, then we need |G| ≤ |Y |.

It
turns out this is both sufficient and necessary! Therefore, a
transversal exists if and only if

|G| ≤ |Y | =
�����⋃
S∈G

S

����� ,
for every subcollection G ⊆ F .

Our theorem!

Hall’s Marriage Theorem
Let F be a family (collection) of finite sets. Then F has a
transversal if and only if, for every subcollection G ⊆ F ,

|G| ≤
�����⋃
S∈G

S

����� .

29/59

Let’s enforce that! If a transversal exists, then we need |G| ≤ |Y |. It
turns out this is both sufficient and necessary! Therefore, a
transversal exists if and only if

|G| ≤ |Y | =
�����⋃
S∈G

S

����� ,
for every subcollection G ⊆ F .

Our theorem!

Hall’s Marriage Theorem
Let F be a family (collection) of finite sets. Then F has a
transversal if and only if, for every subcollection G ⊆ F ,

|G| ≤
�����⋃
S∈G

S

����� .

29/59

Let’s enforce that! If a transversal exists, then we need |G| ≤ |Y |. It
turns out this is both sufficient and necessary! Therefore, a
transversal exists if and only if

|G| ≤ |Y | =
�����⋃
S∈G

S

����� ,
for every subcollection G ⊆ F .

Our theorem!

Hall’s Marriage Theorem
Let F be a family (collection) of finite sets. Then F has a
transversal if and only if, for every subcollection G ⊆ F ,

|G| ≤
�����⋃
S∈G

S

����� .

30/59

Reformulating Hall’s Marriage Theorem

In the original formulation of Hall’s Marriage Theorem, we started
off with a family of sets.

• How could we represent this information as a graph?

• Each set in F represents a woman with a list of men they
wouldn’t mind marrying.

• Therefore, an edge represents the possibility of a married
couple.

• For any collection of women, we need to have enough men to
match to each woman.

• This forms a bipartite graph, where one partition of vertices
represents possible women and the other partition of vertices
represents possible men. Every woman can be matched with a
man if |W | ≤ |N (W) |, where W is a set of women and N (W)
represents the men that is connected to at least one woman in
W .

30/59

Reformulating Hall’s Marriage Theorem

In the original formulation of Hall’s Marriage Theorem, we started
off with a family of sets.

• How could we represent this information as a graph?
• Each set in F represents a woman with a list of men they

wouldn’t mind marrying.

• Therefore, an edge represents the possibility of a married
couple.

• For any collection of women, we need to have enough men to
match to each woman.

• This forms a bipartite graph, where one partition of vertices
represents possible women and the other partition of vertices
represents possible men. Every woman can be matched with a
man if |W | ≤ |N (W) |, where W is a set of women and N (W)
represents the men that is connected to at least one woman in
W .

30/59

Reformulating Hall’s Marriage Theorem

In the original formulation of Hall’s Marriage Theorem, we started
off with a family of sets.

• How could we represent this information as a graph?
• Each set in F represents a woman with a list of men they

wouldn’t mind marrying.
• Therefore, an edge represents the possibility of a married

couple.

• For any collection of women, we need to have enough men to
match to each woman.

• This forms a bipartite graph, where one partition of vertices
represents possible women and the other partition of vertices
represents possible men. Every woman can be matched with a
man if |W | ≤ |N (W) |, where W is a set of women and N (W)
represents the men that is connected to at least one woman in
W .

30/59

Reformulating Hall’s Marriage Theorem

In the original formulation of Hall’s Marriage Theorem, we started
off with a family of sets.

• How could we represent this information as a graph?
• Each set in F represents a woman with a list of men they

wouldn’t mind marrying.
• Therefore, an edge represents the possibility of a married

couple.
• For any collection of women, we need to have enough men to

match to each woman.

• This forms a bipartite graph, where one partition of vertices
represents possible women and the other partition of vertices
represents possible men. Every woman can be matched with a
man if |W | ≤ |N (W) |, where W is a set of women and N (W)
represents the men that is connected to at least one woman in
W .

30/59

Reformulating Hall’s Marriage Theorem

In the original formulation of Hall’s Marriage Theorem, we started
off with a family of sets.

• How could we represent this information as a graph?
• Each set in F represents a woman with a list of men they

wouldn’t mind marrying.
• Therefore, an edge represents the possibility of a married

couple.
• For any collection of women, we need to have enough men to

match to each woman.

• This forms a bipartite graph, where one partition of vertices
represents possible women and the other partition of vertices
represents possible men. Every woman can be matched with a
man if |W | ≤ |N (W) |, where W is a set of women and N (W)
represents the men that is connected to at least one woman in
W .

31/59

F = {A1,A2,A3,A4},
A1 = {a, b, c},
A2 = {a},
A3 = {c, d },
A4 = {c, d }.

A1

A2

A3

A4

a

b

c

d

31/59

F = {A1,A2,A3,A4},
A1 = {a, b, c},
A2 = {a},
A3 = {c, d },
A4 = {c, d }.

A1

A2

A3

A4

a

b

c

d

32/59

Graph-theoretic formulation of Hall’s Marriage Theorem

Hall’s Marriage Theorem
More formally, let G = (V , E) be a bipartite graph with partition V1

and V2 such that V1 ∪ V2 = V . Also, suppose that |V1 | = |V2 |. Then
G has a perfect matching if and only if, for every S ⊆ V1,

|S | ≤ |N (S) |.

33/59

Maximum Flow-Minimum Cut =⇒ HMT

34/59

Maximum Flow-Minimum Cut =⇒ HMT

35/59

Maximum Flow-Minimum Cut =⇒ HMT

36/59

Maximum Flow-Minimum Cut =⇒ HMT

37/59

Maximum Flow-Minimum Cut =⇒ HMT

1

1

1

1

1

1

1

1

38/59

Maximum Flow-Minimum Cut =⇒ HMT

∞

1

1

1

1

1

1

1

1

39/59

Maximum Flow-Minimum Cut =⇒ HMT

∞

1

1

1

1

1

1

1

1

40/59

• Edges that cross the minimum cut can only belong to either the
red or blue side but not both!

• Take some subset S ⊆ V1. Then N (S) must only belong to a
subset of the blue vertices that is neighbours to at least one
vertex in S .

• By only considering these vertices, then the maximum flow
sends one unit of flow to each of these vertices.

∞

1

1

1

1

1

1

40/59

• Edges that cross the minimum cut can only belong to either the
red or blue side but not both!

• Take some subset S ⊆ V1. Then N (S) must only belong to a
subset of the blue vertices that is neighbours to at least one
vertex in S .

• By only considering these vertices, then the maximum flow
sends one unit of flow to each of these vertices.

∞

1

1

1

1

1

1

40/59

• Edges that cross the minimum cut can only belong to either the
red or blue side but not both!

• Take some subset S ⊆ V1. Then N (S) must only belong to a
subset of the blue vertices that is neighbours to at least one
vertex in S .

• By only considering these vertices, then the maximum flow
sends one unit of flow to each of these vertices.

∞

1

1

1

1

1

1

40/59

• Edges that cross the minimum cut can only belong to either the
red or blue side but not both!

• Take some subset S ⊆ V1. Then N (S) must only belong to a
subset of the blue vertices that is neighbours to at least one
vertex in S .

• By only considering these vertices, then the maximum flow
sends one unit of flow to each of these vertices.

∞

1

1

1

1

1

1

41/59

∞

1

1

1

1

1

1

1

1

∞

1

1

1

1

1

1

1

1

An example of a bipartite graph that satisfies Hall’s condition and
an example of a bipartite graph that does not satisfy Hall’s
condition.

• Taking the last two vertices in the red vertex set does not
satisfy Hall’s condition. Note that the maximum flow of the
second flow network is 3.

42/59

Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies:

• Reflexivity: R(x , x) for all x ∈ P .
• Antisymmetry: R(x , y), R(y, x) =⇒ x = y .
• Transitivity: R(x , y), R(y, z) =⇒ R(x , z).

Chains of P
Let P be a finite partially ordered set. A chain is a subset C ⊆ P
such that, for any two elements x , y ∈ C, either R(x , y) or R(y, x).
We say that x and y are comparable.

42/59

Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies:

• Reflexivity: R(x , x) for all x ∈ P .

• Antisymmetry: R(x , y), R(y, x) =⇒ x = y .
• Transitivity: R(x , y), R(y, z) =⇒ R(x , z).

Chains of P
Let P be a finite partially ordered set. A chain is a subset C ⊆ P
such that, for any two elements x , y ∈ C, either R(x , y) or R(y, x).
We say that x and y are comparable.

42/59

Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies:

• Reflexivity: R(x , x) for all x ∈ P .
• Antisymmetry: R(x , y), R(y, x) =⇒ x = y .

• Transitivity: R(x , y), R(y, z) =⇒ R(x , z).

Chains of P
Let P be a finite partially ordered set. A chain is a subset C ⊆ P
such that, for any two elements x , y ∈ C, either R(x , y) or R(y, x).
We say that x and y are comparable.

42/59

Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies:

• Reflexivity: R(x , x) for all x ∈ P .
• Antisymmetry: R(x , y), R(y, x) =⇒ x = y .
• Transitivity: R(x , y), R(y, z) =⇒ R(x , z).

Chains of P
Let P be a finite partially ordered set. A chain is a subset C ⊆ P
such that, for any two elements x , y ∈ C, either R(x , y) or R(y, x).
We say that x and y are comparable.

42/59

Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies:

• Reflexivity: R(x , x) for all x ∈ P .
• Antisymmetry: R(x , y), R(y, x) =⇒ x = y .
• Transitivity: R(x , y), R(y, z) =⇒ R(x , z).

Chains of P
Let P be a finite partially ordered set. A chain is a subset C ⊆ P
such that, for any two elements x , y ∈ C, either R(x , y) or R(y, x).
We say that x and y are comparable.

43/59

Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies

• Reflexivity: R(x , x) for all x ∈ P .
• Antisymmetry: R(x , y), R(y, x) =⇒ x = y .
• Transitivity: R(x , y), R(y, z) =⇒ R(x , z).

Antichains of P
Let P be a finite partially ordered set. An antichain is a subset
A ⊆ P such that, no two elements x , y ∈ A are comparable; that is,
neither R(x , y) nor R(y, x).

43/59

Dilworth’s Theorem

Let P be a finite partially ordered set: a set structure with a binary
operation R that satisfies

• Reflexivity: R(x , x) for all x ∈ P .
• Antisymmetry: R(x , y), R(y, x) =⇒ x = y .
• Transitivity: R(x , y), R(y, z) =⇒ R(x , z).

Antichains of P
Let P be a finite partially ordered set. An antichain is a subset
A ⊆ P such that, no two elements x , y ∈ A are comparable; that is,
neither R(x , y) nor R(y, x).

44/59

Dilworth’s Theorem

It turns out there is a nice connection between the size of an
antichain and the number of chains required to cover an entire set.

2 3

4 6

12

44/59

Dilworth’s Theorem

It turns out there is a nice connection between the size of an
antichain and the number of chains required to cover an entire set.

2 3

4 6

12

45/59

Dilworth’s Theorem

It turns out there is a nice connection between the size of an
antichain and the number of chains required to cover an entire set.

2 3

4 6

12

46/59

Dilworth’s Theorem

It turns out there is a nice connection between the size of an
antichain and the number of chains required to cover an entire set.

2 3

4 6

12

47/59

Dilworth’s Theorem

It turns out there is a nice connection between the size of an
antichain and the number of chains required to cover an entire set.

2 3

4 6

12

48/59

Dilworth’s Theorem

It turns out that the largest sized antichain corresponds to the
smallest number of chains required to cover P ! This is our theorem
that we want to explore.

Dilworth’s Theorem
Let P be a finite partially ordered set and suppose that C is the
smallest collection of disjoint chains that partition P . Let A be a
largest antichain of P . Then |A| = |C|.

48/59

Dilworth’s Theorem

It turns out that the largest sized antichain corresponds to the
smallest number of chains required to cover P ! This is our theorem
that we want to explore.

Dilworth’s Theorem
Let P be a finite partially ordered set and suppose that C is the
smallest collection of disjoint chains that partition P . Let A be a
largest antichain of P . Then |A| = |C|.

49/59

Reformulating Dilworth’s Theorem

• Every point p in P corresponds to two vertices: p− and p+.
• In P , if R(x , y) where x ≠ y , then draw an edge with capacity 1

from x− to y+. There are additional source and sink vertices.

49/59

Reformulating Dilworth’s Theorem

• Every point p in P corresponds to two vertices: p− and p+.

• In P , if R(x , y) where x ≠ y , then draw an edge with capacity 1
from x− to y+. There are additional source and sink vertices.

49/59

Reformulating Dilworth’s Theorem

• Every point p in P corresponds to two vertices: p− and p+.
• In P , if R(x , y) where x ≠ y , then draw an edge with capacity 1

from x− to y+. There are additional source and sink vertices.

49/59

Reformulating Dilworth’s Theorem

• Every point p in P corresponds to two vertices: p− and p+.
• In P , if R(x , y) where x ≠ y , then draw an edge with capacity 1

from x− to y+. There are additional source and sink vertices.

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

49/59

Reformulating Dilworth’s Theorem

• Every point p in P corresponds to two vertices: p− and p+.
• In P , if R(x , y) where x ≠ y , then draw an edge with capacity 1

from x− to y+. There are additional source and sink vertices.

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

50/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• Let |f | denote the maximum flow of the flow network
constructed by the Hasse diagram.

• Then P is partitioned into |B| = |P | − |f | chains.
• We obtain the two chains in the flow network by following

along the paths:

{s → 2− → 4+ → 4− → 12+ → t}, (2 → 4 → 12)

{s → 3− → 6+ → t}. (3 → 6)

50/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• Let |f | denote the maximum flow of the flow network
constructed by the Hasse diagram.

• Then P is partitioned into |B| = |P | − |f | chains.

• We obtain the two chains in the flow network by following
along the paths:

{s → 2− → 4+ → 4− → 12+ → t}, (2 → 4 → 12)

{s → 3− → 6+ → t}. (3 → 6)

50/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• Let |f | denote the maximum flow of the flow network
constructed by the Hasse diagram.

• Then P is partitioned into |B| = |P | − |f | chains.
• We obtain the two chains in the flow network by following

along the paths:

{s → 2− → 4+ → 4− → 12+ → t}, (2 → 4 → 12)

{s → 3− → 6+ → t}. (3 → 6)

51/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• We now compute the size of the largest antichain.

• Consider a cut (S, T) in the flow network. Consider all vertices
p ∈ P such that p− ∈ S and p+ ∈ T . Call it A.

• If a, b ∈ A, then a− ∈ S and b+ ∈ T . If (a−, b+) was an edge,
then s and t would have to be connected. Therefore, a− and b+

has no edge. In other words, a, b are incomparable.
• The only edges that contribute towards the capacity cut are the

edges (s, a−) and (a+, t). Therefore, this excludes all of the
elements in A; that is,

c (S, T) = |P | − |A| =⇒ |A| = |P | − c (S, T).

51/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• We now compute the size of the largest antichain.
• Consider a cut (S, T) in the flow network. Consider all vertices

p ∈ P such that p− ∈ S and p+ ∈ T . Call it A.

• If a, b ∈ A, then a− ∈ S and b+ ∈ T . If (a−, b+) was an edge,
then s and t would have to be connected. Therefore, a− and b+

has no edge. In other words, a, b are incomparable.
• The only edges that contribute towards the capacity cut are the

edges (s, a−) and (a+, t). Therefore, this excludes all of the
elements in A; that is,

c (S, T) = |P | − |A| =⇒ |A| = |P | − c (S, T).

51/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• We now compute the size of the largest antichain.
• Consider a cut (S, T) in the flow network. Consider all vertices

p ∈ P such that p− ∈ S and p+ ∈ T . Call it A.
• If a, b ∈ A, then a− ∈ S and b+ ∈ T . If (a−, b+) was an edge,

then s and t would have to be connected. Therefore, a− and b+

has no edge. In other words, a, b are incomparable.

• The only edges that contribute towards the capacity cut are the
edges (s, a−) and (a+, t). Therefore, this excludes all of the
elements in A; that is,

c (S, T) = |P | − |A| =⇒ |A| = |P | − c (S, T).

51/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• We now compute the size of the largest antichain.
• Consider a cut (S, T) in the flow network. Consider all vertices

p ∈ P such that p− ∈ S and p+ ∈ T . Call it A.
• If a, b ∈ A, then a− ∈ S and b+ ∈ T . If (a−, b+) was an edge,

then s and t would have to be connected. Therefore, a− and b+

has no edge. In other words, a, b are incomparable.
• The only edges that contribute towards the capacity cut are the

edges (s, a−) and (a+, t). Therefore, this excludes all of the
elements in A; that is,

c (S, T) = |P | − |A| =⇒ |A| = |P | − c (S, T).

52/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• Maximum Flow: |P | − |B| number of partitions. So |B| is
minimised (i.e. minimum number of chains).

• Minimum Cut: |P | − |A|; size of an antichain. So |A| is
maximised (i.e. the largest antichain size).

• Therefore, the largest sized antichain corresponds to the
smallest number of chains that partition P .

52/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• Maximum Flow: |P | − |B| number of partitions. So |B| is
minimised (i.e. minimum number of chains).

• Minimum Cut: |P | − |A|; size of an antichain. So |A| is
maximised (i.e. the largest antichain size).

• Therefore, the largest sized antichain corresponds to the
smallest number of chains that partition P .

52/59

2 3

4 6

12

2−

3−

4−

6−

12−

2+

3+

4+

6+

12+

s t

• Maximum Flow: |P | − |B| number of partitions. So |B| is
minimised (i.e. minimum number of chains).

• Minimum Cut: |P | − |A|; size of an antichain. So |A| is
maximised (i.e. the largest antichain size).

• Therefore, the largest sized antichain corresponds to the
smallest number of chains that partition P .

53/59

Menger’s Theorem

In this problem, we are given a directed and unweighted graph
G = (V , E) where u, v ∈ V are two non-adjacent vertices.

• Question: How many edge-disjoint paths are there from u to
v?

u v

54/59

Menger’s Theorem

In this problem, we are given a directed and unweighted graph
G = (V , E) where u, v ∈ V are two non-adjacent vertices.

• Question: How many edge-disjoint paths are there from u to
v?

u v

54/59

Menger’s Theorem

In this problem, we are given a directed and unweighted graph
G = (V , E) where u, v ∈ V are two non-adjacent vertices.

• Question: How many edge-disjoint paths are there from u to
v?

u v

55/59

Menger’s Theorem

In this problem, we are given a directed and unweighted graph
G = (V , E) where u, v ∈ V are two non-adjacent vertices.

• Question: How many edge-disjoint paths are there from u to
v?

u v

56/59

Menger’s Theorem

In this problem, we are given a directed and unweighted graph
G = (V , E) where u, v ∈ V are two non-adjacent vertices.

• Question: How many edge-disjoint paths are there from u to
v?

u v

57/59

Menger’s Theorem

It turns out that the maximum number of edge-disjoint paths from
u to v corresponds to the minimum number of edges required to
separate u and v !

Menger’s Theorem
If u, v ∈ V , then there is a (u, v)-separating set of edges S and a
collection of edge-disjoint paths P from u to v such that |S | = |P |.

58/59

Reformulating Menger’s Theorem

• u is the source and v is the sink vertex.
• Each edge has capacity 1.

u v u v

1

1

1

1

1

1
1

• Note that no two u − v paths can share an edge.
• Therefore, the maximum flow corresponds to the maximum

number of edge-disjoint paths from u to v .
• Since each edge has capacity 1, a cut counts the number of

edges that pass through the cut.
• Therefore, the minimum cut corresponds to the minimum

number of edges to remove from the graph.

59/59

Concluding Remarks

Other theorems that have relations to maximum flow.
• König’s Theorem – maximal matching.
• Mirsky’s Theorem – dual of Dilworth’s Theorem.
• Greene’s Theorem – Generalisation of Dilworth’s Theorem.

	Introduction to Maximum Flow
	Maximum Flow Algorithms
	Maximum Flow-Minimum Cut Theorem

	The Combinatorial Results
	Hall's Marriage Theorem
	Dilworth's Theorem
	Menger's Theorem

