
Programming Workshop #5
Topological Sort and Tree Traversal

David and Ryan



CPMSOCScheduling problem
Imagine following scenario: You are a UNSW compsci student who is planning for your
course schedule, with following constraint

As a student, you want finish your degree as early as you can!
As we probably know, certain courses are prerequisite for certain other courses, for
example, in order to do COMP2521 (Data Structure and Algorithms), we have to
complete COMP1511 (Programming Fundamentals)
You are a smart genius, but UNSW has a new policy - you can only take one Comp
course each term.
And because of you are a smart genius, you want take all courses in the next
diagram!
The question would be, can we get a sequence of course that do not violate any
"prerequisite" requirement?

David and Ryan Programming Workshop #5 1.07.2022 1 / 33



David and Ryan Programming Workshop #5 1.07.2022 2 / 33



CPMSOCScheduling problem
Hmmm, how should we solve this type problem? What if
the prerequisite becomes more complicated?

(Imagine that each vertex is representing a course.)
David and Ryan Programming Workshop #5 1.07.2022 3 / 33



CPMSOCDive into Topological sort
Back to our original problem, we would observe,

There is no deadline for our course example.
All courses takes a term so it’s the same, there is no such additional function.
But we do have Precedence constraint, which is a classic Topological sort situation.

David and Ryan Programming Workshop #5 1.07.2022 4 / 33



CPMSOCBefore we dive into Topological sort
We still need to refresh some graph basic.
A graph G=(V,E) is a general data structure that consist

Set of vertices, (e.g. A set of tasks)
Set of edges, that each connect a pair of vertices. (e.g. The relation between two
tasks)

A graph can be either undirected, or directed. This refers to the type of the edges.
In an undirected graph, edge is bidirectional. (e.g. Each vertices represent a city,
each edge represent a highway)
In a directed graph, edge is one-way. (e.g. Each vertices represent a phone number,
each edge represent a phone call)
In our example, we would need a directed graph, such that each vertices represent a
task, and each edge represent precedence constraint.

David and Ryan Programming Workshop #5 1.07.2022 5 / 33



CPMSOCBefore we dive into Topological sort
A path is a sequence of vertices connected by edges.
A cycle is a path with at least one edge whose first and last vertices are the same.

Acyclic graphs are graphs without cycles.

David and Ryan Programming Workshop #5 1.07.2022 6 / 33



[t]
David and Ryan Programming Workshop #5 1.07.2022 7 / 33



CPMSOCDive into Topological sort
Then for a classical Topological sort application, we would need a directed, acylic graph,
or a DAG or Digraph as it is sometimes called.

It is obvious why we need a directed graph. However might be less intuitive why do we
need a Acylic graph , which is equivalent to with no cycle.

Example

Suppose there exist a cycle C in graph G, then the cycle would be

C = {V1, V2, V3, · · · , V1}

Then we encounter a contradiction, no matter which vertices we pick as our start, it’s
precedence-constraint can not be satisfied.

David and Ryan Programming Workshop #5 1.07.2022 8 / 33



CPMSOCRevision on Depth First Search
As it turns out, we can use depth-first search to perform both cycle-detection and a
topological sort. Isn’t that awesome?
We should have a revision, on the depth-first search algorithm. For the simplicity sake, we
would assume that the directed graph G only has one component.

Algorithm 1: DFS(G, V)
Input: DiGraph G, vertices V
Output: depend on the problem
V.status = VISITED;
for all (V, U) ∈ G.edges() do

if U.status != VISITED then
DFS(G, U);

end
end

David and Ryan Programming Workshop #5 1.07.2022 9 / 33



CPMSOCIntroducing state
Depth first search explores edges out of most recently discovered vertex v, that still
haven’t being visited. Once all edges from v being visited, the search will "backtrack" to
explore edges from the vertex discovers v.
From description above, at an arbitrary step during the execution of DFS algorithm, each
vertex have three states,

Un-visited. As name suggests, the vertex not being discover yet.
Visiting. Vertex have being visited, but not finished.
Finished. All adjacent, undiscovered vertex being examined completely, DFS would
"backtrack" at this point.

David and Ryan Programming Workshop #5 1.07.2022 10 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 11 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 12 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 13 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 14 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 15 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 16 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 17 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 18 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 19 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 20 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 21 / 33



CPMSOC

David and Ryan Programming Workshop #5 1.07.2022 22 / 33



CPMSOCImplementation of state
These states will provide important information about the structure of the graph. To
implement the state, we can use a global variable represent the times, and record it on
vertex k whenever it finishes on k.

The structure of above algorithm is almost identical to the one we learned from
COMP2521. The C++ implementation will be on the next slide.

David and Ryan Programming Workshop #5 1.07.2022 23 / 33



CPMSOCImplementation of DFS topsort
vector<int> outgoingEdges[MAX_V];

vector<int> top_sort;

int state[MAX_V];

// = 0 unvisited

// = 1 visiting

// = 2 finished

void findTopsort(int node) {

if (state[node] == 1) {

// ahhhhhhh theres a cycle

// terminate because topsort is impossible

return;
}

if (state[node] == 2) {

return;
}

David and Ryan Programming Workshop #5 1.07.2022 24 / 33



CPMSOCImplementation of DFS topsort
state[node] = 1;

for (int child : outgoingEdges[node]) {

findTopsort(child);

}

state[node] = 2;

// node is added to topsort when all dependancies are already added

top_sort.push_back(node);

}

// make sure topsort covers all components of the graph

for (int node = 1; node <= V; node++) {

dfs(node);

}

reverse(top_sort.begin(). top_sort.end());

David and Ryan Programming Workshop #5 1.07.2022 25 / 33



CPMSOCImplementation of Kahn’s topsort
vector<int> outgoingEdges[MAX_V];

int num_prereqs[MAX_V];

for (int node = 1; node <= V; ++node) {

for (int child : outgoingEdges[node]) {

num_prereqs[child]++;

}

}

vector<int> starting_nodes;

for (int node = 1; node <= V; ++node) {

if (num_prereqs[node] == 0) {

starting_nodes.push_back(node);

}

}

David and Ryan Programming Workshop #5 1.07.2022 26 / 33



CPMSOCImplementation of Kahn’s topsort
vector<int> top_sort;

while (!starting_nodes.empty()) {

// extract an arbitary starting node

int curr_node = starting_nodes.back();

starting_nodes.pop_back();

for (int child : outgoingEdges[curr_node]) {

num_prereqs[child]--;

if (num_prereqs[child] == 0) {

starting_nodes.push(child);

}

}

}

David and Ryan Programming Workshop #5 1.07.2022 27 / 33



CPMSOCImplementation of Kahn’s topsort
if (top_sort.size() < V) {

// top sort doesnt contain all nodes

// => some nodes still have prereqs

// => theres a circular dependancy

// => graph has a cycle

// ahhhh! stop here because our topsort isn't valid - there is no valid topsort

}

David and Ryan Programming Workshop #5 1.07.2022 28 / 33



CPMSOCConsider:
Which do you find easier to understand? Which do you find easier to implement?
Time complexity analysis: O(V + E)

Does this still work when the graph has many components?

David and Ryan Programming Workshop #5 1.07.2022 29 / 33



CPMSOCLet’s solve a problem
https://leetcode.com/problems/course-schedule-ii/

David and Ryan Programming Workshop #5 1.07.2022 30 / 33

https://leetcode.com/problems/course-schedule-ii/


CPMSOCMore challenging problems
https://leetcode.com/problems/parallel-courses-iii/
https://codeforces.com/contest/510/problem/C
http://www.usaco.org/index.php?page=viewproblem2&cpid=838

David and Ryan Programming Workshop #5 1.07.2022 31 / 33

https://leetcode.com/problems/parallel-courses-iii/
https://codeforces.com/contest/510/problem/C
http://www.usaco.org/index.php?page=viewproblem2&cpid=838


CPMSOCAttendance form :D
https://forms.gle/UwwCBjbjgESDv2qE8

David and Ryan Programming Workshop #5 1.07.2022 32 / 33

https://forms.gle/UwwCBjbjgESDv2qE8


CPMSOCFurther events
Please join us at:

Next weeks Maths workshop! (Tuesday 12-2)
Guest speaker David Angell!
Programming weekly blog posts!

David and Ryan Programming Workshop #5 1.07.2022 33 / 33


	Overview
	Topological Sort
	Question

	Refresh on graph basics
	Topological sort

