Programming Workshop \#3
 Shortest Path Problems

Patrick Moore and Ryan Ong

Today’s Workshop

1 All-Pairs Shortest Path Problem

2 Floyd-Warshall Algorithm
3 Bellman-Ford Algorithm

4 Problem: Arbitrage
5 Problem: Heavy Flies
6 Wrap up

All-Pairs Shortest Path Problem

You are given a graph G with N nodes and M weighted directed edges. Edge weights may be negative. Find the shortest distance between all pairs of nodes in G.

Floyd-Washall Algorithm

initialise an adjacency matrix dist[[]] as follows for all i and j : if there is an edge from i to j :

- dist[$[j[j]$ is the weight of the edge if $i==j$:
- dist[$[j] j$ is 0
otherwise dist[$[j] j]$ is infinity

Floyd-Washall Algorithm

initialise an adjacency matrix dist[[]] as follows for all i and j :
if there is an edge from i to j :

- dist[$[j[j]$ is the weight of the edge
if $i==j$:
- dist[$[j] j$ is 0
otherwise dist[i][j] is infinity
for k from 1 to N :
\square for i from 1 to N :
\square for j from 1 to N :
$\square \operatorname{dist}[j][j]=\min (\operatorname{dist}[j][j], \operatorname{dist}[j][k]+\operatorname{dist}[k][j])$

Analysis of Floyd-Warshall

Floyd-Warshall runs in $\mathrm{O}\left(N^{3}\right)$.

Analysis of Floyd-Warshall

Floyd-Warshall runs in $\mathrm{O}\left(N^{3}\right)$.
If the edge weights are non-negative, then you can use Dijkstra's Algorithm for single source shortest paths for $\mathrm{O}(N * M * \log (N))$.

Behaviour with negative weights

The Floyd-Warshall Algorithm performs perfectly fine with negative weights!

Definition

A negative weight cycle occurs when in which you can begin at a node X, take some path around the graph and back to X such that the sum of the weights on the graph is negative.

Negative weight cycles break shortest-path algorithms, but we can detect such cycles by checking the dist $[i j[i]$ for all i from 1 to N and seeing if they are negative.

Single Source Shortest Path Problem

You are given a graph G with N nodes and M edges. Edge weights may be negative. You are also given a source, S. You must find the minimum distance from S to all nodes in the graph.

Note that since edge weights may be negative, Dijkstra's algorithm will not work.

Bellman-Ford Algorithm

Create arrays distance[V], initialised to infinity (except distance[S] =0) and parent[V], initialised to null.

Bellman-Ford Algorithm

Create arrays distance[V], initialised to infinity (except distance[S] = 0) and parent[V], initialised to null.

for i from 1 to $V-1$:

■ for each edge ($u->v$; w):

- if distance[u] + w < distance[v]:
\square distance[v] = distance[u] + w
- parent[v] = u

Bellman-Ford Algorithm

Create arrays distance[V], initialised to infinity (except distance[S] = 0) and parent[V], initialised to null.

```
for i from 1 to V - 1:
    \square for each edge (u -> v; w):
        ■ if distance[u] + w < distance[v]:
                            \square distance[v] = distance[u] + w
    | parent[v] = u
```

To detect and report the cycle, repeat the inner loop one more time. If there is any change, then there must be a negative weight cycle. Follow the trail of edges that improve the results and

Analysis of Bellman-Ford

Bellman-Ford runs in $\mathrm{O}(N * M)$.

Analysis of Bellman-Ford

Bellman-Ford runs in $\mathrm{O}(N * M)$.
Several constant-factor optimisations exist for Bellman-Ford, generally by tweaking the order in which edges are visited to make updates propagate faster. It is possible to reduce the repetitions of the outer loop to $N / 2$ in the worst case, or $N / 3$ on average. While beneficial in some cases, these generally aren't necessary in competitions.

Problem: Arbitrage

Arbitrages use the exchange rates between currencies of different exchanges to turn 1 unit of a currency into more than 1 unit of a currency.

Given a set of directed exchange rates between different currencies, determine if an arbitrage is possible.

Problem: Heavy Flies

You are given an undirected weighted graph G with N nodes and M edges. You are also given a source S and a destination T. You need to output the shortest path from S to T.

Problem: Heavy Flies

You are given an undirected weighted graph G with N nodes and M edges. You are also given a source S and a destination T. You need to output the shortest path from S to T.You also need to output the *second* shortest path from S to T. You are guaranteed that there is only 1 shortest path from S to T.

Attendance

https://forms.gle/jaohN8kE4yTimY9y5

Wrap up

■ Problems:
■ Implement Floyd-Warshall or Bellman-Ford and compare its performance to Dijkstra on graphs with positive edge weights
■ Arbitrage (SPOJ): https://www.spoj.com/problems/ARBITRAG/

- Heavy Flies

■ Tourist Guide (UVA 10099) https://onlinejudge.org/index.php?option=com ${ }_{o}$ nlinejudgeltemid $=8$ page $=$ show $_{p}$ roblemproblem = 1040
■ Greg and Graph: https://codeforces.com/contest/295/problem/B

- CP workshops will be held in weeks 3,5 and 7 , probably same time and place.

■ A reminder about the competitive maths workshops that run in weeks 2, 4, 68.

