
ICPC Workshop #7
Introduction to the ICPC and Dynamic Programming

Ryan and Patrick



CPMSOC

1 Introduction to the ICPC
ICPC Format
ICPC Teams
ICPC Content

2 Dynamic Programming
Dynamic Programming in 2 Dimensions
Dynamic Programming on a Rooted Tree

3 Wrap Up
Ryan and Patrick ICPC Workshop #7 23.09.2022 1 / 7



CPMSOCDynamic Programming
Definition

Dynamic Programming is am optimisation technique that prevents repeating calculation
for equal sub-problems.

For most dynamic programming problems, we need to define two things:
Base Cases: The initial (often the most simple) version of the problem.
Recursive Cases: Larger problems defined generally in terms of some dynamic
programming "state" which break down into smaller cases

Ryan and Patrick ICPC Workshop #7 23.09.2022 1 / 7



CPMSOCSolving Fibonacci with Dynamic Programming
Given an integer, N , output the N -th Fibonacci number. Each Fibonacci number is
defined as the sum of the two previous numbers, where F0 = 0 and F1 = 1.

Can we define base cases?
F (0) = 0 and F (1) = 1
Can we define the recursive cases, in terms of N?
F (N) = F (N − 1) + F (N − 2)

When we implement this as a standard recursive function, we find that we often call the
function with the same value of N , we repeat the calculation, but ultimately return the
same answer. The idea of dynamic programming is to prevent us from repeating that
calculation, and just returning the answer we calculated earlier.

This improves the time complexity from O(2N ) to O(N).

Ryan and Patrick ICPC Workshop #7 23.09.2022 2 / 7



CPMSOCSolving Fibonacci with Dynamic Programming
Given an integer, N , output the N -th Fibonacci number. Each Fibonacci number is
defined as the sum of the two previous numbers, where F0 = 0 and F1 = 1.

Can we define base cases?

F (0) = 0 and F (1) = 1
Can we define the recursive cases, in terms of N?
F (N) = F (N − 1) + F (N − 2)

When we implement this as a standard recursive function, we find that we often call the
function with the same value of N , we repeat the calculation, but ultimately return the
same answer. The idea of dynamic programming is to prevent us from repeating that
calculation, and just returning the answer we calculated earlier.

This improves the time complexity from O(2N ) to O(N).

Ryan and Patrick ICPC Workshop #7 23.09.2022 2 / 7



CPMSOCSolving Fibonacci with Dynamic Programming
Given an integer, N , output the N -th Fibonacci number. Each Fibonacci number is
defined as the sum of the two previous numbers, where F0 = 0 and F1 = 1.

Can we define base cases?
F (0) = 0 and F (1) = 1

Can we define the recursive cases, in terms of N?
F (N) = F (N − 1) + F (N − 2)

When we implement this as a standard recursive function, we find that we often call the
function with the same value of N , we repeat the calculation, but ultimately return the
same answer. The idea of dynamic programming is to prevent us from repeating that
calculation, and just returning the answer we calculated earlier.

This improves the time complexity from O(2N ) to O(N).

Ryan and Patrick ICPC Workshop #7 23.09.2022 2 / 7



CPMSOCSolving Fibonacci with Dynamic Programming
Given an integer, N , output the N -th Fibonacci number. Each Fibonacci number is
defined as the sum of the two previous numbers, where F0 = 0 and F1 = 1.

Can we define base cases?
F (0) = 0 and F (1) = 1
Can we define the recursive cases, in terms of N?

F (N) = F (N − 1) + F (N − 2)

When we implement this as a standard recursive function, we find that we often call the
function with the same value of N , we repeat the calculation, but ultimately return the
same answer. The idea of dynamic programming is to prevent us from repeating that
calculation, and just returning the answer we calculated earlier.

This improves the time complexity from O(2N ) to O(N).

Ryan and Patrick ICPC Workshop #7 23.09.2022 2 / 7



CPMSOCSolving Fibonacci with Dynamic Programming
Given an integer, N , output the N -th Fibonacci number. Each Fibonacci number is
defined as the sum of the two previous numbers, where F0 = 0 and F1 = 1.

Can we define base cases?
F (0) = 0 and F (1) = 1
Can we define the recursive cases, in terms of N?
F (N) = F (N − 1) + F (N − 2)

When we implement this as a standard recursive function, we find that we often call the
function with the same value of N , we repeat the calculation, but ultimately return the
same answer. The idea of dynamic programming is to prevent us from repeating that
calculation, and just returning the answer we calculated earlier.

This improves the time complexity from O(2N ) to O(N).

Ryan and Patrick ICPC Workshop #7 23.09.2022 2 / 7



CPMSOCSolving Fibonacci with Dynamic Programming
Given an integer, N , output the N -th Fibonacci number. Each Fibonacci number is
defined as the sum of the two previous numbers, where F0 = 0 and F1 = 1.

Can we define base cases?
F (0) = 0 and F (1) = 1
Can we define the recursive cases, in terms of N?
F (N) = F (N − 1) + F (N − 2)

When we implement this as a standard recursive function, we find that we often call the
function with the same value of N , we repeat the calculation, but ultimately return the
same answer. The idea of dynamic programming is to prevent us from repeating that
calculation, and just returning the answer we calculated earlier.

This improves the time complexity from O(2N ) to O(N).

Ryan and Patrick ICPC Workshop #7 23.09.2022 2 / 7



CPMSOCIterative vs Recursive Dynamic Programming
There are two general approaches to standard DP problems: Iterative and Recursive.

Recursive Dynamic Programming:
Start with the big problem, and break it down into smaller problems.
Often implemented as recursive functions which take the DP "state" as arguments
and returns the answer for that subproblem.
You must be careful when making lots of recursive calls not to create memory issues
or have a function call itself.

Iterative Dynamic Programming:
Start with the smaller problems. Calculate the answer to those problems and build up
to the final answer.
Often implemented as as for loops from the small case to the large case.
Depending on the problem, the looping behaviour can make this a constant factor
more efficient than an equivalent recursive dynamic programming algorithm.

Ryan and Patrick ICPC Workshop #7 23.09.2022 3 / 7



CPMSOCDynamic Programming in 2 Dimensions
Problem: IOI ’99 Little Shop of Flowers

https://dmoj.ca/problem/ioi99p1

Can we define a DP state in terms of two variables?

Can we define a recursive function for the maximum aesthetics given that we begin at
vase N , bunch F?

Can we define base cases for our function?

What is the time complexity of a DP solution to this problem?

Ryan and Patrick ICPC Workshop #7 23.09.2022 4 / 7

https://dmoj.ca/problem/ioi99p1


CPMSOCDynamic Programming in 2 Dimensions
Problem: IOI ’99 Little Shop of Flowers

https://dmoj.ca/problem/ioi99p1

Can we define a DP state in terms of two variables?

Can we define a recursive function for the maximum aesthetics given that we begin at
vase N , bunch F?

Can we define base cases for our function?

What is the time complexity of a DP solution to this problem?

Ryan and Patrick ICPC Workshop #7 23.09.2022 4 / 7

https://dmoj.ca/problem/ioi99p1


CPMSOCDynamic Programming on a Rooted Tree
Problem: Snurgle Holders. https://orac2.info/problem/aiio07snurgle/
You have a factory with a construction process defined in N steps. Each step is required
for 1 other step, except for step N . You can place inspectors on any number of steps, as
long as no two are on adjacent steps (adjacent defined as one step leading to the other).
What is the maximum number of inspectors you can place in the factory?

Suppose we are free to place an inspector at step i. Can we break down the answer into
two cases?

What is the time complexity of a recursive dynamic programming solution to this?

Ryan and Patrick ICPC Workshop #7 23.09.2022 5 / 7

https://orac2.info/problem/aiio07snurgle/


CPMSOCDynamic Programming on a Rooted Tree
Problem: Snurgle Holders. https://orac2.info/problem/aiio07snurgle/
You have a factory with a construction process defined in N steps. Each step is required
for 1 other step, except for step N . You can place inspectors on any number of steps, as
long as no two are on adjacent steps (adjacent defined as one step leading to the other).
What is the maximum number of inspectors you can place in the factory?

Suppose we are free to place an inspector at step i. Can we break down the answer into
two cases?

What is the time complexity of a recursive dynamic programming solution to this?

Ryan and Patrick ICPC Workshop #7 23.09.2022 5 / 7

https://orac2.info/problem/aiio07snurgle/


CPMSOCDynamic Programming on a Rooted Tree
Problem: Snurgle Holders. https://orac2.info/problem/aiio07snurgle/
You have a factory with a construction process defined in N steps. Each step is required
for 1 other step, except for step N . You can place inspectors on any number of steps, as
long as no two are on adjacent steps (adjacent defined as one step leading to the other).
What is the maximum number of inspectors you can place in the factory?

Suppose we are free to place an inspector at step i. Can we break down the answer into
two cases?

What is the time complexity of a recursive dynamic programming solution to this?

Ryan and Patrick ICPC Workshop #7 23.09.2022 5 / 7

https://orac2.info/problem/aiio07snurgle/


CPMSOCAttendance form :D
https://forms.gle/opFYJL3zUyrBN3Cx8

Ryan and Patrick ICPC Workshop #7 23.09.2022 6 / 7

https://forms.gle/opFYJL3zUyrBN3Cx8


CPMSOCWrap Up
Tommorow: Annual Programming Competition!
Next Wed: AGM
Next Sat: ANZAC 7
Week 4 Tue: Maths workshop

Ryan and Patrick ICPC Workshop #7 23.09.2022 7 / 7


	Introduction to the ICPC
	ICPC Format
	ICPC Teams
	ICPC Content

	Dynamic Programming
	Dynamic Programming in 2 Dimensions
	Dynamic Programming on a Rooted Tree

	Wrap Up

