workshop 5 solutions

Cyril Subramanian and Haibing Wang

April 2023

1 Introduction

1. Show that $7 \mid x^{2}+y^{2}$ iff $7 \mid x$ and $7 \mid y$ (use quadratic residues).

Solution: The quadratic residues under mod 7 are $0,1,2,4$. The only pair whose members are from this set and add to 0 are 0,0 , thus x and y are $0(\bmod 7)$. The other direction is trivial
2. If $7 \mid a^{3}+b^{3}+c^{3}$, how many of a, b, c could be divisible by 7 ? (use cubic residues).
Solution: The cubic residues of 7 are $-1,0,1$. The only ways to make three of theses add to 7 are $\{0,0,1\}$ or $\{-1,-1,1\}$.
3. Do there exist three squares summing to 7007 ?

Solution: Under $\bmod 8$, the quadratic residues are $0,1,4 . \quad 7007 \equiv 7$ $(\bmod 8)$, and no three of these quadratic residues add to $7(\bmod 8)$.
4. Prove there are no integer solutions to

$$
x^{2}-2 y^{2}=10
$$

Solution: Under $\bmod 5$, the quadratic residues are $0,1,4.10+2 y^{2}$ can thus only take up the values $10+2 \cdot 0^{2} \equiv 0,10+2 \cdot 1^{2} \equiv 2,10+2 \cdot 4^{2} \equiv 2$. Evidently, the only of these which are quadratic residues are when x, y are multiples of 5 , so $x^{2}-2 y^{2}$ is a multiple of 25 (the $L H S$), while the $R H S$ is not.
5. Find all integer solutions to $a^{3}+2 b^{3}=7 a^{2} b$.

Solution: The only way for $a^{3}+2 b^{3}$ to be $7 a^{2} b \equiv 0(\bmod 7)$ (because of cubic residues) is if $a \equiv b \equiv 0(\bmod 7)$. Note this means $\frac{a}{7}$ and $\frac{b}{7}$ are integers and, upon substitution, clearly satisfy the equation. Thus, infinite descent shows there are no non-zero solutions as non-zero integers can only be divided by 7 a finite number of times before they are no longer integers. Thus, $a=b=0$ is the only set of integer solutions.
6. Prove there are infinite primes $3 \bmod 4$.

Solution: Suppose there are finite number of $3 \bmod 4$ primes, denoting them as p_{1}, \ldots, p_{n}. Then, if their product $p_{1} \ldots p_{n}$ is:

- $1 \bmod 4, p_{1} p_{2} \ldots p_{n}+2 \equiv 0+2=2 \not \equiv 0 \quad\left(\bmod p_{i}\right)$, for all $1 \leq i \leq n$
- $3 \bmod 4, p_{1} p_{2} \ldots p_{n}+4 \equiv 0+4=4 \not \equiv 0 \quad\left(\bmod p_{i}\right)$, for all $1 \leq i \leq n$ (note $p_{i} \neq 2$).

Each constructed number must be divisible by at least one $3 \bmod 4$ prime, since if not then the resulting number would be $1 \bmod 4$. Therefore, by contradiction, there must be infinite $3 \bmod 4$ primes.
7. Given p, q are coprime, find the value of

$$
\left\lfloor\frac{p}{q}\right\rfloor+\left\lfloor\frac{2 p}{q}\right\rfloor+\ldots+\left\lfloor\frac{(q-1) p}{q}\right\rfloor .
$$

Solution: The fractional part of each $\frac{k p}{q}$ for $k=0$ to $q-1$ takes on a different value under mod q divided by q (since multiples of a coprime number under a modulus permute through all possible numbers in that modulus), thus the resulting sum equals

$$
\sum_{k=1}^{q-1} \frac{k p}{q}-\sum_{k=1}^{q-1} \frac{k}{q}=\frac{p q(q-1)}{2 q}-\frac{q(q-1)}{2 q}=\frac{(p-1)(q-1)}{2}
$$

8. (Gauss' Lemma) An odd prime p is congruent to $1 \bmod 4$ iff there exists x such that $x^{2} \equiv-1 \bmod p$.
Solution: If $x^{2} \equiv-1 \quad(\bmod p), x \not \equiv 1 \quad(\bmod p)$, so $x^{3} \not \equiv 1 \quad(\bmod p)$, but $x^{4} \equiv 1 \quad(\bmod p)$. Thus 4 is the smallest positive k where $x^{k} \equiv 1$ $(\bmod p)$, so $4 \mid p-1$ (see first property from workshop slides)
Note that
$1 \cdot 2 \cdot \ldots \cdot \frac{p-1}{2} \cdot\left(\frac{p-1}{2}+1\right) \cdot \ldots \cdot(p-1)=\left(\frac{p-1}{2}\right)!\cdot(-1)^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!=-1$,
by Wilson's theorem. Thus, if $p-1 \equiv 0(\bmod 4)$, then $\frac{p-1}{2}$ is even, so $\left(\frac{p-1}{2}\right)!^{2}=-1$.
9. Find all consecutive integer powers of 2 and 3 (in either order).

Solution: Consider two cases:

- $2^{n}-1=3^{m}$ for integers n, m. If n is odd, $2^{n}-1 \equiv(-1)^{n}-1=$ $-1-1 \equiv 1 \quad(\bmod 3)$. The only power of 3 which is $1 \bmod 3$ is $1=2^{1}-1$, and no other odd n make this work. If n is even, note that $2^{n}-1$ can be a power of 3 only if $2^{\frac{n}{2}}-1$ is a power of 3 (but this is not a guarantee) since $\frac{n}{2}$ is an integer, and $2^{n}-1=\left(2^{\frac{n}{2}}-1\right)\left(2^{\frac{n}{2}}+1\right)$. Notice that $2^{2}-1=3^{1}$ but $2^{4}-1=15$ is not a power of 3 . Thus, by induction (since every number is double a smaller even number or an odd number), there are no other solutions for n, m.
- $3^{n}-1=2^{m}$ for integers n, m. We use a similar argument to before: if n is odd, $3^{n}-1 \equiv(-1)^{n}-1=-1-1 \equiv 2 \quad(\bmod 4)$. The only 2 $\bmod 4$ power of 2 is $2=3^{1}-1$. If n is even, $3^{n}-1$ is only a power of 2 if $3^{\frac{n}{2}}-1$ is a power of 2 . We see $3^{2}-1=2^{3}$ but $3^{4}-1=80$ is not a power of 2 , so by induction no other numbers work.

Thus we have found $(1,2),(3,4),(2,3)$ and $(8,9)$ as the only consecutive integer powers of 2 and 3 .
10. For prime p, q, how many quadratic residues are there under mod $p q$?

Solution: You can prove this nicely by considering $a^{2} \equiv b^{2} \quad(\bmod p q)$ and then considering when there are only 4,2 , or 1 unique solution(s) for b (try proving there can't be 3 unique solutions!), but I won't do that :D.

The space of $\bmod p q$ is isomorphic to the group product of $\bmod p$ and \bmod q (this roughly means that we could create a one-to-one mapping between every element in mod $p q$ and a vector with the first row being an element from p and the second an element from q, and, more importantly, addition and multiplication and preserved as component-wise addition and multiplication). This means every quadratic residue can be found by taking all possible choosings of one quadratic residue from $\bmod p$ and one from \bmod q (order preserved), which is $\frac{p+1}{2} \times \frac{q+1}{2}=\frac{(p+1)(q+1)}{4}$.
11. Prove there are infinite primes $1 \bmod 4$. (a lot harder)

Solution: We will use question 8. Suppose there are finite number of $1 \bmod 4$ primes, call them $p_{1}, p_{2}, \ldots, p_{n}$. Then, $4\left(p_{1} p_{2} \ldots p_{n}\right)^{2}+1 \equiv 1$ $(\bmod 4)$. This means, if we take a prime p that divides this equation, then because there exists $x=2 p_{1} p_{2} \ldots p_{n}$ such that $x^{2}+1 \equiv 0 \quad(\bmod p), p \equiv 1$ $(\bmod 4)$. However, $x^{2}+1 \equiv 0+1=1 \not \equiv 0\left(\bmod p_{i}\right)$ for all $1 \leq i \leq n$, so p cannot be any of p_{1}, \ldots, p_{n}. Thus we have generated a new prime, resulting in a contradiction. This means there are infinite $1 \bmod 4$ primes.

