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1 Introduction

1. Show that 7|x2 + y2 iff 7|x and 7|y (use quadratic residues).
Solution: The quadratic residues under mod 7 are 0, 1, 2, 4. The only
pair whose members are from this set and add to 0 are 0, 0, thus x and y
are 0 (mod 7). The other direction is trivial

2. If 7|a3 + b3 + c3, how many of a, b, c could be divisible by 7? (use cubic
residues).
Solution: The cubic residues of 7 are −1, 0, 1. The only ways to make
three of theses add to 7 are {0, 0, 1} or {−1,−1, 1}.

3. Do there exist three squares summing to 7007?
Solution: Under mod 8, the quadratic residues are 0, 1, 4. 7007 ≡ 7
(mod 8), and no three of these quadratic residues add to 7 (mod 8).

4. Prove there are no integer solutions to

x2 − 2y2 = 10.

Solution: Under mod 5, the quadratic residues are 0, 1, 4. 10 + 2y2 can
thus only take up the values 10+ 2 · 02 ≡ 0, 10+ 2 · 12 ≡ 2, 10+ 2 · 42 ≡ 2.
Evidently, the only of these which are quadratic residues are when x, y are
multiples of 5, so x2 − 2y2 is a multiple of 25 (the LHS), while the RHS
is not.

5. Find all integer solutions to a3 + 2b3 = 7a2b.
Solution: The only way for a3 + 2b3 to be 7a2b ≡ 0 (mod 7) (because
of cubic residues) is if a ≡ b ≡ 0 (mod 7). Note this means a

7 and b
7

are integers and, upon substitution, clearly satisfy the equation. Thus,
infinite descent shows there are no non-zero solutions as non-zero integers
can only be divided by 7 a finite number of times before they are no longer
integers. Thus, a = b = 0 is the only set of integer solutions.

6. Prove there are infinite primes 3 mod 4.
Solution: Suppose there are finite number of 3 mod 4 primes, denoting
them as p1, . . . , pn. Then, if their product p1 . . . pn is:
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• 1 mod 4, p1p2 . . . pn +2 ≡ 0+ 2 = 2 ̸≡ 0 (mod pi), for all 1 ≤ i ≤ n

• 3 mod 4, p1p2 . . . pn +4 ≡ 0+ 4 = 4 ̸≡ 0 (mod pi), for all 1 ≤ i ≤ n
(note pi ̸= 2).

Each constructed number must be divisible by at least one 3 mod 4 prime,
since if not then the resulting number would be 1 mod 4. Therefore, by
contradiction, there must be infinite 3 mod 4 primes.

7. Given p, q are coprime, find the value of⌊p
q

⌋
+

⌊2p
q

⌋
+ . . .+

⌊ (q − 1)p

q

⌋
.

Solution: The fractional part of each kp
q for k = 0 to q − 1 takes on a

different value under mod q divided by q (since multiples of a coprime
number under a modulus permute through all possible numbers in that
modulus), thus the resulting sum equals

q−1∑
k=1

kp

q
−

q−1∑
k=1

k

q
=

pq(q − 1)

2q
− q(q − 1)

2q
=

(p− 1)(q − 1)

2

8. (Gauss’ Lemma) An odd prime p is congruent to 1 mod 4 iff there exists
x such that x2 ≡ −1 mod p.
Solution: If x2 ≡ −1 (mod p), x ̸≡ 1 (mod p), so x3 ̸≡ 1 (mod p),
but x4 ≡ 1 (mod p). Thus 4 is the smallest positive k where xk ≡ 1
(mod p), so 4|p− 1 (see first property from workshop slides)
Note that

1·2·. . .·p− 1

2
·
(
p− 1

2
+ 1

)
·. . .·(p−1) =

(
p− 1

2

)
!·(−1)

p−1
2

(
p− 1

2

)
! = −1,

by Wilson’s theorem. Thus, if p − 1 ≡ 0 (mod 4), thenp−1
2 is even, so(

p−1
2

)
!2 = −1.

9. Find all consecutive integer powers of 2 and 3 (in either order).
Solution: Consider two cases:

• 2n − 1 = 3m for integers n,m. If n is odd, 2n − 1 ≡ (−1)n − 1 =
−1 − 1 ≡ 1 (mod 3). The only power of 3 which is 1 mod 3 is
1 = 21 − 1, and no other odd n make this work. If n is even, note
that 2n−1 can be a power of 3 only if 2

n
2 −1 is a power of 3 (but this is

not a guarantee) since n
2 is an integer, and 2n−1 = (2

n
2 −1)(2

n
2 +1).

Notice that 22 − 1 = 31 but 24 − 1 = 15 is not a power of 3. Thus,
by induction (since every number is double a smaller even number or
an odd number), there are no other solutions for n,m.
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• 3n − 1 = 2m for integers n,m. We use a similar argument to before:
if n is odd, 3n − 1 ≡ (−1)n − 1 = −1− 1 ≡ 2 (mod 4). The only 2
mod 4 power of 2 is 2 = 31 − 1. If n is even, 3n − 1 is only a power
of 2 if 3

n
2 − 1 is a power of 2. We see 32 − 1 = 23 but 34 − 1 = 80 is

not a power of 2, so by induction no other numbers work.

Thus we have found (1, 2), (3, 4), (2, 3) and (8, 9) as the only consecutive
integer powers of 2 and 3.

10. For prime p, q, how many quadratic residues are there under mod pq?
Solution: You can prove this nicely by considering a2 ≡ b2 (mod pq)
and then considering when there are only 4, 2, or 1 unique solution(s) for
b (try proving there can’t be 3 unique solutions!), but I won’t do that :D.

The space of mod pq is isomorphic to the group product of mod p and mod
q (this roughly means that we could create a one-to-one mapping between
every element in mod pq and a vector with the first row being an element
from p and the second an element from q, and, more importantly, addition
and multiplication and preserved as component-wise addition and multi-
plication). This means every quadratic residue can be found by taking all
possible choosings of one quadratic residue from mod p and one from mod

q (order preserved), which is p+1
2 × q+1

2 = (p+1)(q+1)
4 .

11. Prove there are infinite primes 1 mod 4. (a lot harder)
Solution: We will use question 8. Suppose there are finite number of
1 mod 4 primes, call them p1, p2, . . . , pn. Then, 4(p1p2 . . . pn)

2 + 1 ≡ 1
(mod 4). This means, if we take a prime p that divides this equation, then
because there exists x = 2p1p2 . . . pn such that x2+1 ≡ 0 (mod p), p ≡ 1
(mod 4). However, x2 + 1 ≡ 0 + 1 = 1 ̸≡ 0 (mod pi) for all 1 ≤ i ≤ n,
so p cannot be any of p1, . . . , pn. Thus we have generated a new prime,
resulting in a contradiction. This means there are infinite 1 mod 4 primes.
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