Proof and False Proofs

Zac and Smit

March 2023

1. A knight always tells the truth and a knave always lies. Bob, Jerry and Tom are each either a knight or knave and know who the other knights and knaves are. Bob says everybody is a knight. Jerry says that Bob is a knave, then, shortly afterwards, says Tom is a knave. Out of these three, who is a knight and who is a knave?
2. Find the mistake in this inductive proof that $2^{n}>n^{2}$ for all $n \geq 0$.

Base case, $n=0: 2^{0}=1>0^{2}=0$.
Now we show $2^{k}>k^{2} \Longrightarrow 2^{k+1}>(k+1)^{2}$.

$$
\begin{aligned}
2^{k+1} & =2 \cdot 2^{k} \\
2 \cdot 2^{k} & >2 k^{2} \text { by the inductive step } \\
(k+1)^{2} & =k^{2}+2 k+1 \\
k^{2} & >2 k+1 \\
\Longrightarrow 2 k^{2} & >k^{2}+2 k+1=(k+1)^{2} \\
\Longrightarrow 2 \cdot 2^{k} & >(k+1)^{2}
\end{aligned}
$$

so, inductively we have $2^{n}>n^{2}$ for all $n \geq 0$.
3. Given that $a \Longrightarrow b$ and $b \Longrightarrow c$ and $d \Longrightarrow b$, which of the following are necessarily true?
i. $a \Longrightarrow c$
ii. $a \Longrightarrow d$
iii. $\neg c \Longrightarrow a$
iv. $\neg c \Longrightarrow \neg a$
(Hint: $p \Longrightarrow q$ statements mean p being true implies q is true, and nothing more. $\neg p$ is read as the negation of p, and is the logical opposite of p, so that if p is true, $\neg p$ is false, and if p is false, $\neg p$ is true.)
4. What is wrong with this proof?

$$
\begin{aligned}
& \int \frac{1}{x \log (x)} \\
& u=\frac{1}{\log (x)}, d v=1 / x \\
& d u=\frac{-1}{x \log (x)^{2}}, v=\log (x) \\
\Longrightarrow & \int \frac{1}{x \log (x)}=1+\int \frac{1}{x \log (x)} \\
\Longrightarrow & 0=1
\end{aligned}
$$

5. (SMMC 2022) C1. Let A and B be two fixed positive real numbers. The function f is defined by

$$
f(x, y)=\min \left\{x, \frac{A}{y}, y+\frac{B}{x}\right\}
$$

for all pairs (x, y) of positive real numbers. Determine the largest possible value of $f(x, y)$. (Note: once you have an answer, ensure to try and rigorously prove this solution works).
6. (IMO 2022 P2) Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that there exists exactly one positive real y for every positive real x such that:

$$
f(x) y+f(y) x \leq 2
$$

