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1 Problems

1. What is 57× 19 mod 13.
Solution: 57× 19 ≡ 5× 6 = 30 ≡ 4 mod 13

2. Evaluate gcd(52, 91).
Solution: gcd(52, 91) = gcd(52, 91 − 52) = gcd(52, 39) = gcd(52 − 39, 39) =
gcd(13, 39) = gcd(13, 39− 13× 2) = gcd(13, 13) = 13

3. Evaluate 5123 mod 7.
Solution: 5123 = 5120 × 53 =

(
520

)6 × 53 ≡ 1× (−2)3 = −8 ≡ 6 mod 7

4. Prove that for all integers n with n ≥ 3, if 2n − 1 is prime, then n can-
not be even.
Solution: If n is even, then n = 2k for some integer k. So,

2n − 1 =
(
2k
)2 − 1 ≡ 1− 1 = 0 mod 3

. This means 2n − 1 is divisible by 3, so 2n − 1 being prime must imply n is not
even (otherwise 2n−1 would not be prime, which would result in a contradiction)

5. (Wilson’s theorem) Show that (p− 1)! = −1 (mod p) for prime p.

Hint: Consider inverses
Solution: Consider x2 ≡ 1 mod p. This can be simplified to (x − 1)(x + 1) ≡
0 mod p. Since p is prime, (x− 1) is entirely divisible by p or (x+1) is entirely
divisible by p (no other way to split up the factors of p). So, x ≡ 1 or x ≡ −1.

Since every integer 0 < x < p is coprime to p, it has a unique inverse, which
means inverses exist in distinct pairs except for 1 and p − 1. Thus, if p is an

odd prime, (p− 1)! ≡ 1× 1
p−3
2 × (p− 1) = (p− 1) ≡ −1 mod p. If p = 2, then

(p− 1)! = 1! = 1 ≡ −1 mod 2.

6. Prove that among any three distinct integers we can find two, say a and
b, such that the number a3b− ab3 is a multiple of 10.
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Solution: We may rewrite this as ab(a2 − b2) = ab(a− b)(a+ b). If a and b are
odd, then (a− b) ≡ 0 mod 2, so ab(a− b)(a+ b) ≡ 0 mod 2 . If either of a or b
are even, then ab(a − b)(a + b) ≡ 0 mod 2. Thus in both cases the same result
holds.

Now, suppose there exist three integers such that we can choose two, a and
b, where ab(a− b)(a+ b) ̸≡ 0 mod 5. Then we require a ̸≡ 0 mod 5, b ̸≡ 0 mod 5
and a ̸≡ b mod 5. So, the three integers must be distinct and, under mod 5,
must take on three values from {1, 2, 3, 4}. However, we can always choose two
values such that a + b ≡ 0 mod 5; if 2 or 3 is not one of our choices, then we
choose a ≡ 1 mod 5 and b ≡ 4 mod 5, and if 1 or 4 is not selected, then we
choose a ≡ 2 mod 5 and b ≡ 3 mod 5. Thus, by contradiction, ab(a−b)(a+b) ≡
0 mod 5.

Since, we can choose two values a and b from three integers such that

ab(a− b)(a+ b) ≡ 0 mod 5,

and these integers also have the property that

ab(a− b)(a+ b) ≡ 0 mod 2,

it must be that ab(a− b)(a+ b) ≡ 0 mod 10.

7. Define the function f(x, y) for positive integers x, y as:

f(x, y) =

{
f(y, x mod y) + 1 for x, y > 1
0 else

}
where x mod y refers to the remainder after calculating x ÷ y. Find two

values x ≤ y ≤ 90 for which f(x, y) attains its maximum.
Solution: This function essentially simulates the Euclidean algorithm and ”re-
turns” the number of steps. Consider the process in reverse: we would start
off with two integers a ≤ b and add a multiple of the smaller to the larger. To
maximise the number of steps, we want to add the smallest possible multiple to
the other number (i.e. itself). We can express this as a recurrence relation:

F1 = a, F2 = b, Fn = Fn−1 + Fn−2

. Hm... where have I seen this? Starting with 1, 2 results in 55, 89 in 8 steps,
and no other valid a, b results in both values being less than or equal to 90 in 8
steps (one of a, b must be greater than 1 otherwise f(a, b) is unattainable). So
f(55, 89) achieves the maximum for x, y ≤ 90.

8. Define the sequence of integers a1, a2, a3, ... by a1 = 1, and

an+1 = (n+ 1− gcd(an, n))an
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for all integers n ≥ 1. Prove that an+1

an
= n if and only if n is prime or n = 1.

(Simon Marais 2021)
Solution: Let’s use strong induction (yadda yadda base case whatever).
Assume statement is true for all positive integers n ≤ k − 1, where k − 1 is a
positive integer.
If k = 1, then ak+1

ak
= k + 1− gcd(ak, 1) = k + 1− 1 = k.

If k is prime, then for all n < k, since an+1

an
= n + 1 − gcd(an, n) ≤ n (as

gcd(an, n) ≥ 1), k ∤ an+1

an
. Moreover, since k is prime, gcd(k, an+1

an
) = 1. So, we

evaluate:

gcd(k, ak) = gcd

(
k,

ak
ak−1

× ak−1

ak−2
× · · · × a2

a1
× 1

)
= 1.

Therefore ak+1

ak
= k + 1− 1 = k.

If k is composite, then it is divisible by some prime p where p < k. From our in-
duction hypothesis, we know

ap+1

ap
= p. So, because

ap+1

ap
|ak, gcd(ak, k) ≥ p > 1,

thus ak+1

ak
= k + 1− gcd(ak, k) < k.
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