Number theory problems

Cyril and Zac

February 2023

1 Problems

1. what is $57 \times 19 \mod 13$.

2. Evaluate gcd(52, 91).

3. Evaluate $5^{123} \mod 7$.

4. Prove that for all integers n with $n \ge 3$, if $2^n - 1$ is prime, then n cannot be even.

5. (Wilson's theorem) Show that $(p-1)! = -1 \pmod{p}$ for prime p.

Hint: Consider inverses

6. Prove that among any three distinct integers we can find two, say a and b, such that the number $a^{3}b - ab^{3}$ is a multiple of 10.

7. Define the function f(x, y) for positive integers x, y as:

$$f(x,y) = \left\{ \begin{array}{cc} f(y,x \mod y) + 1 & \text{for } x, y > 1 \\ 0 & \text{else} \end{array} \right\}$$

where $x \mod y$ refers to the remainder after calculating $x \div y$. Find two values $x \le y \le 90$ for which f(x, y) attains its maximum.

8. Define the sequence of integers a_1, a_2, a_3, \dots by $a_1 = 1$, and

$$a_{n+1} = (n+1 - \gcd(a_n, n))a_n$$

for all integers $n \ge 1$. Prove that $\frac{a_{n+1}}{a_n} = n$ if and only if n is prime or n = 1. (Simon Marais 2021)