Number theory problems

Cyril and Zac

February 2023

1 Problems

1. what is $57 \times 19 \bmod 13$.
2. Evaluate $\operatorname{gcd}(52,91)$.
3. Evaluate $5^{123} \bmod 7$.
4. Prove that for all integers n with $n \geq 3$, if $2^{n}-1$ is prime, then n cannot be even.
5. (Wilson's theorem) Show that $(p-1)!=-1 \quad(\bmod p)$ for prime p.

Hint: Consider inverses

6. Prove that among any three distinct integers we can find two, say a and b, such that the number $a^{3} b-a b^{3}$ is a multiple of 10 .
7. Define the function $f(x, y)$ for positive integers x, y as:

$$
f(x, y)=\left\{\begin{array}{ll}
f(y, x \bmod y)+1 & \text { for } x, y>1 \\
0 & \text { else }
\end{array}\right\}
$$

where $x \bmod y$ refers to the remainder after calculating $x \div y$. Find two values $x \leq y \leq 90$ for which $f(x, y)$ attains its maximum.
8. Define the sequence of integers $a_{1}, a_{2}, a_{3}, \ldots$ by $a_{1}=1$, and

$$
a_{n+1}=\left(n+1-\operatorname{gcd}\left(a_{n}, n\right)\right) a_{n}
$$

for all integers $n \geq 1$. Prove that $\frac{a_{n+1}}{a_{n}}=n$ if and only if n is prime or $n=1$. (Simon Marais 2021)

