inequalities solutions

Cyril and David

July 2023

1 Introduction

All variables are positive real numbers. Prove each of the following inequalities and (if possible) find the values for which equality holds.

1. $[\mathrm{AM}-\mathrm{GM}] a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} \geq a b c(a+b+c)$

Solution: (note that rearrangement can be directly applied :D) Take $a^{2} b^{2}+b^{2} c^{2} \geq 2 \sqrt{a^{2} b^{2} b^{2} c^{2}}=2 a b^{2} c$. Performing this cyclically with the other two pairs of terms and adding them up, we obtain $2\left(a^{2} b^{2}+b^{2} c^{2}+\right.$ $\left.c^{2} a^{2}\right) \geq 2 a b c(a+b+c)$
2. [Squares] $a^{2}+\frac{1}{a_{1}^{2}}+6 \geq 4 a+\frac{4}{a}$

Solution: $a^{2}+\frac{1}{a^{2}}+2+4-4\left(a+\frac{1}{a}\right)=\left(a+\frac{1}{a}\right)^{2}-4\left(a+\frac{1}{a}\right)+4=\left(a+\frac{1}{a}-2\right)^{2} \geq 0$
3. [Triangle substitution] Let a, b, c be the sides of a triangle. Prove that $(a+b)(b+c)(c+a) \geq 8(a+b-c)(b+c-a)(c+a-b)$.
Solution: From triangle substitution we may write $a=y+z, b=z+x, c=$ $x+y$ for positive real numbers x, y, z. Then,

$$
\begin{aligned}
(y+z+z+x)(z+x+x+y)(x+y+y+z) & =(x+y+2 z)(2 x+y+z)(x+2 y+z) \\
& \geq 4 \cdot \sqrt[4]{x y z^{2}} \cdot 4 \cdot \sqrt[4]{x^{2} y z} \cdot 4 \cdot \sqrt[4]{x y^{2} z} \\
& =64 \sqrt[4]{x^{4} y^{4} z^{4}} \\
& =64 x y z \\
& =8(2 z)(2 x)(2 y) \\
& =8(a+b-c)(b+c-a)(c+a-b)
\end{aligned}
$$

Note: the motivation for using AM-GM is because we want a "product" of things (namely, 64xyz), and we use four variables since this "strongly" retains a consistent equality condition (if we instead picked $x, y, 2 z$, we'd have an equality condition of $x=y=2 z$, however this isn't consistent with the other equality conditions of $x=2 y=z$ and $2 x=y=z$, thus "losing" some information).
4. [Rearrangement inequality] $a^{3}+b^{3}+c^{3} \geq a^{2} b+b^{2} c+c^{2} a$

Solution: WLOG $a \geq b \geq c$, then $a^{2} \geq b^{2} \geq c^{2}$. The LHS is the
maximal pairing of these sequences, and the RHS is some permutation, so the rearrangement inequality directly follows.
5. [Cauchy Schwartz]

$$
(a+b+c)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right) \geq \frac{9}{2}
$$

Solution: To use Cauchy schwartz, we aim to have a product between two sum of squares on the LHS and a dot product on the RHS. Here we have a setup where the terms can be easily cancelled out (if we first duplicate the LHS terms):

$$
\begin{aligned}
L H S & =\frac{1}{2}(b+c+a+c+a+b)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right) \\
& \geq \frac{1}{2}\left(\frac{\sqrt{b+c}}{\sqrt{b+c}}+\frac{\sqrt{a+c}}{\sqrt{a+c}}+\frac{\sqrt{a+b}}{\sqrt{a+b}}\right)^{2} \\
& =\frac{9}{2}=\text { RHS }
\end{aligned}
$$

6. [Homogenisation] $a^{2}+b^{2}+c^{2} \geq a+b+c$ when $a b c=1$

Solution Degree of LHS is 2 and the degree of RHS is 1 . Since the degree of $a b c$ is 3 , we try multiplying the RHS by $\sqrt[3]{a b c}$. The form of the new RHS indicates AM-GM with three variables. trying $a^{2}, a b, a c$, we find $a^{2}+a b+a c \geq 3 \sqrt[3]{a^{4} b c}=3 a \sqrt[3]{a b c}$. Performing this cyclically with b and c gives us $a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \geq 3 \sqrt[3]{a b c}(a+b+c)$. We then obtain our desired result by noticing $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.
7. [Jensen's inequality]

$$
\frac{1}{1+a b}+\frac{1}{1+b c}+\frac{1}{1+c a} \leq \frac{3}{4} \text { when } a b c=a+b+c
$$

Hint: $\frac{x}{s+x}$ is concave for positive s
Solution: The $a b, b c$ and $c a$ in the denominators may motivate us to convert them to $\frac{a+b+c}{c}, \frac{a+b+c}{a}, \frac{a+b+c}{b}$ respectively (recall $a+b+c=a b c$), and setting $s=a+b+c$ gives us LHS $=\frac{a}{s+a}+\frac{b}{s+b}+\frac{c}{s+c}$. Since $\frac{x}{s+x}$ is concave, we use Jensen's inequality to write:

$$
3\left(\frac{1}{3}\left(\frac{a}{s+a}+\frac{b}{s+b}+\frac{c}{s+c}\right)\right) \leq 3\left(\frac{\frac{s}{3}}{s+\frac{s}{3}}\right)=3\left(\frac{\frac{1}{3}}{\frac{4}{3}}\right)=\frac{3}{4}
$$

8. a, b, c are positive integers such that $a^{2} b^{3} c^{4}=1$. Find the minimum value of $a+b+c$ (you may use indices in your answer).
Solution: Using AM-GM splitting to write $a+b+c=2 \frac{a}{2}+3 \frac{b}{3}+4 \frac{c}{4}$, we find $a+b+c \geq \sqrt[9]{\frac{a^{2} b^{3} c^{4}}{2^{2} 3^{3} 4^{4}}}=\frac{1}{\sqrt[9]{2^{10} \times 3^{3}}}$. Equality is obtained when $\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$ which you may verify to obtain the minimum value.
9. $(a+b)^{4} \leq\left(5 a^{2}+b^{2}\right)\left(a^{2}+2 b^{2}\right)$

Solution: Using Cauchy Schwartz:
$(a+b)^{4}=\left(a^{2}+2 a b+b^{2}\right)^{2}=(a \cdot a+2 a \cdot b+b \cdot b)^{2} \leq\left(a^{2}+4 a^{2}+b^{2}\right)\left(a^{2}+b^{2}+b^{2}\right)=\left(5 a^{2}+b^{2}\right)\left(a^{2}+2 b^{2}\right)$
10.

$$
\frac{a^{8}+b^{8}+c^{8}}{a^{3} b^{3} c^{3}} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

Solution:Note that $L H S=\frac{a^{8}}{a^{3} b^{3} c^{3}}+\frac{b^{8}}{a^{3} b^{3} c^{3}}+\frac{c^{8}}{a^{3} b^{3} c^{3}}$. WLOG $a \geq b \geq c$, then $\frac{1}{c^{3}} \geq \frac{1}{a^{3}}$. a^{8}, c^{8} are maximally paired with $\frac{1}{c^{3}}, \frac{1}{a^{3}}$, so swapping gives us

$$
L H S \geq \frac{a^{8}}{a^{6} b^{3}}+\frac{b^{8}}{a^{3} b^{3} c^{3}}+\frac{c^{8}}{b^{3} c^{6}}
$$

Doing this two more times swapping it for b and c then a and b gives us

$$
L H S \geq \frac{a^{8}}{a^{9}}+\frac{b^{8}}{b^{9}}+\frac{c^{8}}{c^{9}}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

11. $(a+b)(b+c)(c+a) \geq 8 a b c$

Solution: See if you can find it in our workshop slides : P
12. $a b+b c+c d+d a \geq a^{b} b^{c} c^{d} d^{a}$ when $a+b+c+d=1$

Solution: As noted at the bottom of the Jensen's inequality slide for this workshop, the inequality also holds for any expectation (i.e. a weighted average). If we treat event a as having probability b, b with probability c, c with d and d with a, note that the probabilities add to $a+b+c+d=1$, so this is a valid probability function. Then, since \ln is concave,
$\ln (a b+b c+c d+d a) \geq b \ln (a)+c \ln (b)+d \ln (c)+a \ln (d)=\ln \left(a^{b} b^{c} c^{d} d^{a}\right)$
Applying the exponential to both sides gives us our desired inequality.

