generating functions problems

Cyril and Smit

June 2023

1 mmm pizza nom no mn om

1. Find

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}
$$

Solution:

$$
\begin{aligned}
\sum_{n=1}^{\infty} n x^{-n} & =-x \sum_{n=1}^{\infty}-n x^{-n-1} \\
& =-x \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x} x^{-n} \\
& =-x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\sum_{n=1}^{\infty} x^{-n}\right) \\
& =-x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{1}{1-\frac{1}{x}}\right) \\
& =\frac{x}{(x-1)^{2}}
\end{aligned}
$$

Therefore $\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{2}{1^{2}}=4$
2. How many ways can 30 indistinguishable votes be distributed across 4 different candidates?
Solution: Each candidate can have $0,1,2, \ldots$ votes, so we can express the answer to this as the coefficient of the $x^{3} 0$ term in the expansion of $\left(1+x+x^{2}+\cdots\right)^{4}=(1-x)^{-4}$. Using the generalised binomial theorem, we find our answer is $\binom{-4}{3} 0=\binom{33}{30}$.
3. Find a closed form expression for the nth Fibonacci number using generating functions (hint: have a look at our generating functions workshop slides ;))
Solution: We found that the generating function for the Fibonacci numbers is $\frac{x}{1-x-x^{2}}$, which we can separate using partial fractions to write $\frac{1}{\sqrt{5}}\left(\frac{1}{1-\frac{1}{\phi} x}+\frac{1}{1-\phi x}\right)$, where $\phi=\frac{1+\sqrt{5}}{2}$ (the golden ratio). To obtain the
x^{n} coefficient, we simply note the two parts inside the parantheses each generate a geometric series, so $F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\frac{1}{\phi^{n}}\right)$.
4. Let p_{n} be the nth odd prime number. Show that

$$
\prod_{n=1}^{\infty}\left(\frac{p_{n}^{2}}{p_{n}^{2}-1}\right)=\frac{\pi^{2}}{8}
$$

Solution: Note that $\frac{p^{2}}{p^{2}-1}=\frac{1}{1-\frac{1}{p^{2}}}=1+\frac{1}{p^{2}}+\frac{1}{p^{4}}+\cdots$. Applying this to the product, we see we have a product of multiple geometric series each with the ratio of a reciprocal of a different odd prime's square. We can treat this as a factorisation, where from each factor we can choose 1, or $\frac{1}{p^{2}}$, or $\frac{1}{p^{4}}, \ldots$ Thus the original equation generates a series of the sum of squares of reciprocals of odd integers (i.e. $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots$). Then:

$$
\begin{aligned}
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots & =\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots-\frac{1}{2^{2}}-\frac{1}{4^{2}}-\cdots \\
& =\frac{\pi^{2}}{6}-\frac{\pi^{2}}{24}=\frac{4 \pi^{2}-\pi^{2}}{24} \\
& =\frac{\pi^{2}}{8}
\end{aligned}
$$

5. The Catalan numbers are generated by the generating function $C(z)=$ $\frac{1-\sqrt{1-4 z}}{2 z}$. Find a closed formula for the nth Catalan number.
Solution: Note we can use the generalised binomial theorem for fractional powers! So now we just have to find the coefficient of z^{n+1} and divide by 2, which gives:

$$
\begin{aligned}
-\frac{1}{2 z}\binom{\frac{1}{2}}{n+1} 1^{\frac{1}{2}-n-1}(-4 z)^{n+1} & =-\frac{1}{2} \frac{1 \cdot-1 \cdot-3 \cdots(-2 n+1)}{(n+1)!\cdot 2 \cdot 2^{n}}(-4)^{n+1} z^{n} \\
& =\frac{1 \cdot 3 \cdots(2 n-1)}{2^{n}(n+1)!} \cdot 4^{n} z^{n} \cdot \frac{2 \cdot 4 \cdots(2 n)}{2^{n} n!} \\
& =\frac{(2 n)!}{4^{n} n!(n+1)!} \cdot 4^{n} z^{n}=\frac{1}{n+1} \frac{(2 n)!}{n!n!} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

6. How many ways can a $3 \times n$ grid be tiled with 2×1 dominoes?

Solution: We write a two-variable recurrence relation and solve for it using generating functions (see https://en.wikipedia.org/wiki/Generat.ng_ function\#Applications)
7. [IMO Shortlist 1998] Suppose $a_{0}, a_{1}, a_{2}, \cdots$ is an increasing sequence of non-negative integers such that every non-negative integer can be written as $a_{i}+2 a_{j}+4 a_{k}$, for a unique triple $\left(a_{i}, a_{j}, a_{k}\right)$. Find a_{1998}.

Solution: Denote the generating function for the $z^{a_{n}}$ terms as $G(z)$. Then $G(z) G\left(z^{2}\right) G\left(z^{4}\right)=\frac{1}{1-z}$. Note that $G\left(z^{2}\right) G\left(z^{4}\right) G\left(z^{8}\right)=\frac{1}{1-z^{2}}$, so $\frac{G\left(z^{4}\right) G\left(z^{2}\right) G(z)}{G\left(z^{8}\right) G\left(z^{4}\right) G\left(z^{2}\right)}=\frac{G(z)}{G\left(z^{8}\right)}=\frac{1-z^{2}}{1-z}=1+z$. We may repeat this when substituting $z \rightarrow z^{8}$ to obtain $\frac{G\left(z^{8}\right)}{G\left(z^{6} 4\right)}$, and so on. Eventually, we have an 8^{k} which is larger than any coefficient which we may want to find, thus we realise that $G(z)=(1+z)\left(1+z^{8}\right)\left(1+z^{64}\right) \cdots$. The 1998 th lowest-order z^{k} term is the $1998 t h$ smallest number which contains only $1^{\prime} s$ and $0^{\prime} s$ in its base 8 representation, so our answer is the sum of the cubes of the distinct powers of two whose sum is 1998.

