functional equations

Zac and Cyril

July 2023

1 Problems

Find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ where $f(x y)=\frac{f(x) f(y)}{f(x)+f(y)}$
Find all functions which satisfy each property:

1. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x+3)=x^{2}-3 x$

Solution: Substitute $x=x-3$:

$$
f(x)=(x-3)^{2}-3(x-3)=(x-3)(x-6)
$$

2. $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, f(x)+2 f\left(\frac{1}{x}\right)=x$

Solution: Substitute $x=\frac{1}{x}$:

$$
f\left(\frac{1}{x}\right)+2 f(x)=\frac{1}{x}
$$

Multiplying this by two and subtracting the previous equation:

$$
3 f(x)=\frac{2}{x}-x \Longrightarrow f(x)=\frac{2}{3 x}-\frac{x}{3}
$$

3. $f: \mathbb{R} \backslash\{-1,1\} \rightarrow \mathbb{R}, f(x)^{2} f\left(\frac{1-x}{1+x}\right)=x$

Solution: Let $g(x)=\frac{1-x}{1+x}$, and note that since $g(g(x))=\frac{1-\frac{1-x}{1-x}}{1+\frac{1-x}{1+x}}=$ $\frac{1+x-(1-x)}{1-x+1+x}=\frac{2 x}{2}=x$, so g is cyclic with order 2 . Thus we may write two equations after substituting $x=\frac{1-x}{1+x}$:

$$
\begin{gathered}
f\left(\frac{1-x}{1+x}\right) f(x)^{2}=x \\
f\left(\frac{1-x}{1+x}\right)^{2} f(x)=\frac{1-x}{1+x}
\end{gathered}
$$

Dividing the square of the first by the second gives us:

$$
f(x)^{3}=\frac{x^{2}(1+x)}{1-x} \Longrightarrow f(x)=\sqrt[3]{\frac{x^{2}(1+x)}{1-x}}
$$

4. $f: \mathbb{Z} \rightarrow \mathbb{R}, f(x+y)=f(x)+2 x y+f(y), f$ is continuous

Solution: The terms appear to very closely resemble the expansion of $(x+y)^{2}$, so we know that $f(x)=x^{2}$ is a solution. To find all other solutions, we try $f(x)=g(x)+x^{2}$, and substitute back in to find: $g(x+y)+x^{2}+2 x y+y^{2}=g(x)+x^{2}+2 x y+g(y)+y^{2}$, so we obtain $g(x+y)=g(x)+g(y)$. This is the functional equation seen in the slides before (known as Cauchy's functional equation), which we know, since f, and thus g, is continuous, has $g(x)=A x$ as its only solution for all real A. So we find the complete solution set to $f(x)$ is $f(x)=x^{2}+A x$ for all real A.
5. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x) y+f(x) f(y)=f(2 f(x) f(y))$

Solution: Exploiting the symmetry of the equation by noticing $f(x) y$ is the only asymmetrical equation allows us to write two equations after substituting $x=y$:

$$
f(x) y+f(x) f(y)=f(2 f(x) f(y))
$$

$$
f(y) x+f(x) f(y)=f(2 f(x) f(y))
$$

Subtracting these equations, cancelling terms and rearranging shows that $f(x) y=f(y) x$. Either $f(x)=0$ for all real nonzero x (note we may also obtain $f(0)=0$ by substituting $x=0$), or we may substitute $y=c$ such that c and $f(c)$ is nonzero. Then, $f(x)=\frac{f(c)}{c} x=A x$ for some real x. Plugging this back into our functional equation: $A x y+A^{2} x y=2 A^{3} x y \Longrightarrow x y\left(2 A^{3}-A^{2}-\right.$ $A)=x y(A(A-1)(2 A+1))$, so we find $0, x,-\frac{x}{2}$ all satisfy the functional equation.
6. $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(x^{2}+y\right)=f\left(x^{27}+2 y\right)+f\left(x^{4}\right)$

Solution: Though this looks ugly, remember that substitutions are made to cancel terms: notice the LHS and RHS left terms are the only ones with a y term, thus we may be motivated to try and cancel them by finding when $x^{27}+2 y=x^{2}+y$. Solving, we find $y=x^{2}-x^{27}=x^{2}\left(1-x^{25}\right)$. Substituting $y=x^{2}-x^{27}$, we cancel out these two terms and are left with $f\left(x^{4}\right)=0$. This only gives us $f(x)=0$ for non-negative x, however notice we may now write $f\left(x^{27}+2 y\right)=f\left(x^{2}+y\right)$. Substituting $y=0$, we find $f\left(x^{27}\right)=f\left(x^{2}\right)=0$, and since x^{27} takes on all real values, we conclude $f(x)=0$ is the only solution.
7. $f: \mathbb{R} \rightarrow \mathbb{R}, f$ is continuous, and $f\left(x^{2}\right)=x f(x)$

Solution: For non-negative $x, f(x)=\sqrt{x} f(\sqrt{x})=\sqrt{x} \sqrt[4]{x} f(\sqrt[4]{x})=$ $\left.f\left(x^{\frac{1}{2^{n}}}\right) x^{\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}}\right)$. Taking the limit as $n \rightarrow \infty$, we notice $\frac{1}{2}+$ $\frac{1}{4}+\cdots=1$, and that $\frac{1}{2^{n}} \rightarrow 0$. Since f is continuous, it must hold that $f(x)=f(1) x$. Also, note that for $x<0, f(x)=\frac{f\left(x^{2}\right)}{x}=$ $\frac{f(1) x^{2}}{x}=f(1) x$. So, we find (with verification) that $f(x)=A x$ for all real A is a complete solution set.
8. $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, f(f(x))=6 x-f(x)$

Solution: We have a higher order term $(f(f(x)))$ expressed in
terms of lower order ones (x and $f(x)$), so we are motivated to try $x=f(x): f(f(f(x)))=6 f(x)-f(f(x))=6 f(x)-6 x+$ $f(x)=7 f(x)-6 x$. This allows us to quickly realise that repeated substitution can be expressed in terms of $f(x)$ and x. First, define $f^{n}(x)$ as n compositions of f evaluated at x. Then, we write $f^{n}(x)=a_{n} f(x)+b_{n} x, f^{2}(x)=-f(x)+6(x)$ and $f^{n+1}(x)=$ $f^{n}(f(x))=a_{n} f(f(x))+b_{n} f(x)=6 a_{n} x+\left(b_{n}-a_{n}\right) f(x)$. We may then write a recurrence relation:

$$
\begin{gathered}
a_{0}=x, a_{n}=f^{n}(x) \\
a_{n+2}=f\left(f\left(f^{n}(x)\right)\right)=6 a_{n}-f\left(a_{n}\right)=6 a_{n}-a_{n+1}
\end{gathered}
$$

This gives us the characteristic equation $x^{2}+x-6=(x+3)(x-2)$, thus allowing us to write $a_{n}=A 2^{n}+B(-3)^{n}$ for some functional terms (independent of n) A, B. However, note that since $(-3)^{n}$ grows faster than 2^{n}, if B is a non-zero function then there exists a value of $x \in \mathbb{R}^{+}$where we can choose n so that $a_{n}<0$, which is a contradiction. Thus, $B=0$. Furthermore, $x=a_{0}=A$. Therefore, $a_{1}=f(x)=2^{1} A=2 x$ (which we may verify satisfies the functional equation).
9. $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(f(x)^{2}+f(y)\right)=x f(x)+y$

Solution: Substituting $x=0$ gives us $f(f(y))=y$ for all real y, from which we can deduce injectivity (if $f(a)=f(b)$, substitute $y=a$ and $y=b$ and equate the equations to find $a=b)$. Substituting $x=f(x)$ gives us $f\left(f(f(x))^{2}+f(y)\right)=f(x) f(f(x))+y$ which, after using the previous result that f is an involution (or cyclic with order 2), gives us $f\left(x^{2}+f(y)\right)=x f(x)+y$. The RHS is equivalent to the RHS of our initial functional equation, so equating and removing the enclosing f 's (legal as we've proved injectivity) gives us:

$$
f\left(x^{2}+f(y)\right)=f\left(f(x)^{2}+f(y)\right)
$$

$$
x^{2}+f(y)=f(x)^{2}+f(y) \Longrightarrow f(x)= \pm x
$$

To show that the function is always one of the signs, suppose $f(a)=a$ and $f(b)=-b$, and substitute $x=a, y=b$ to find $f\left(a^{2}-b\right)=a^{2}+b$. Either $f\left(a^{2}-b\right)=-a^{2}+b=a^{2}+b \Longrightarrow a=0$, or $f\left(a^{2}-b\right)=a^{2}-b=a^{2}+b \Longrightarrow b=0$: in both cases, one of the values must be 0 and thus not actually have a different sign. Thus the only solutions to the functional equation are $f(x)=x$ and $f(x)=-x$ (substitute to verify)

