functional equations

Zac and Cyril

July 2023

1 Problems

Find a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ where $f(x y)=\frac{f(x) f(y)}{f(x)+f(y)}$
Find all functions which satisfy each property:

1. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x+3)=x^{2}-3 x$
2. $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, f(x)+2 f\left(\frac{1}{x}\right)=x$
3. $f: \mathbb{R} \backslash\{-1,1\} \rightarrow \mathbb{R}, f(x)^{2} f\left(\frac{1-x}{1+x}\right)=x$
4. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x) y+f(x) f(y)=f(2 f(x) f(y))$
5. $f: \mathbb{Z} \rightarrow \mathbb{R}, f(x+y)=f(x)+2 x y+f(y), f$ is continuous
6. $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(x^{2}+y\right)=f\left(x^{27}+2 y\right)+f\left(x^{4}\right)$
7. $f: \mathbb{R} \rightarrow \mathbb{R}, f$ is continuous, and $f\left(x^{2}\right)=x f(x)$
8. $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, f(f(x))=6 x-f(x)$
9. $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(f(x)^{2}+f(y)\right)=x f(x)+y$
