Mathematics Workshop \#3 Problem Solving

Cyril (with a side of Zac)

Table of contents

1 Introduction

- Welcome

2 Tips and tricks

- Tips

■ Experiment

- Draw a diagram

■ Subproblems
■ Reframing problem

- Reframing problem

3 Thanks for coming

Welcome

- Next mathematics workshops in week 8

■ Slides will be uploaded on website (unswcpmsoc.com)
■ Pizza time soon ${ }^{\text {TM }}$

- Experiment
- Draw a diagram
- Subtasks
- Reframe the problem

Experiment

■ Try different values for numbers
■ Try easier versions of the problem

Experiment

A game is played between two players. Each player takes turns by removing anywhere from 1 to 4 stones from a pile. The person to remove the last stone wins. If both players play optimally, who will win if we start with 2023 stones?

Experiment

A game is played between two players. Each player takes turns by removing anywhere from 1 to 2 stones from a pile. The person to remove the last stone wins. If both players play optimally, who will win if we start with 2023 stones?

Draw a diagram

The integers 1 to 2023 are arranged in some sequence. One operation is made by swapping two numbers. What is the minimum integer k such that we can sort any sequence in less than k operations?

Subproblems

Break the problem into steps which are, hopefully, solvable.

Subproblems

Find the maximum volume of a rectangular prism with a fixed surface area S.

Subproblems

Find the maximum volume of a rectangular prism with a fixed surface area S.
■ Is there a formula for the surface area and volume?

Subproblems

Find the maximum volume of a rectangular prism with a fixed surface area S.
■ Is there a formula for the surface area and volume? Maybe $2(a b+b c+c a)$ and $a b c$.

Subproblems

Find the maximum volume of a rectangular prism with a fixed surface area S.
■ Is there a formula for the surface area and volume? Maybe $2(a b+b c+c a)$ and $a b c$.
$■$ Is there a relationship between the two?

Subproblems

Find the maximum volume of a rectangular prism with a fixed surface area S.
■ Is there a formula for the surface area and volume? Maybe $2(a b+b c+c a)$ and $a b c$.
\square Is there a relationship between the two? Perhaps an unequal one?

Subproblems

Find the maximum volume of a rectangular prism with a fixed surface area S.
■ Is there a formula for the surface area and volume? Maybe $2(a b+b c+c a)$ and $a b c$.
$■$ Is there a relationship between the two? Perhaps an unequal one?
■ Now can we find the maximum?

Reframing the problem

ATC clubs

We've been doing this so far!

Reframing the problem

There are 1001 points in the plane such that no three lie on a straight line.
The points are joined by 1001 line segments such that each point is an endpoint of exactly two of the line segments.

Prove that there does not exist a straight line in the plane that intersects each of the 1001 line segments (but not at their endpoints).

Reframing the problem

There are 1001 points in the plane such that no three lie on a straight line.
The points are joined by 1001 line segments such that each point is an endpoint of exactly two of the line segments.

Prove that there does not exist a straight line in the plane that intersects each of the 1001 line segments (but not at their endpoints).

This is problem A1 of the Simon Marais Mathematics Competition in 2020!

Attendance code

