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CPMSOCWelcome
Next mathematics workshops in week 7?
Slides will be uploaded on website (unswcpmsoc.com)
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CPMSOCAttendance form
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CPMSOCA Classic Problem
Funny hat man (Leonhard) was in Königsberg, wishing to visit all the landmasses
and bridges.
For peak efficiency we want to visit each bridge only once. Can this be done?
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CPMSOCA Classic Solution
Each time we land on a landmass, we must leave it, unless it is our final destination.
Each time we leave a landmass, we must have landed on it from a bridge, unless we
started there.
Since there is only one start, and one end, at most two landmasses can be
connected to an odd number of bridges attached to them.
All the rest need an even number of bridges (by pairing entry bridges to exit bridges).
Since the diagram shows all landmasses have an odd number of bridges, Leonhard
cannot fulfil his dreams, and thus is sad.
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CPMSOCGraphs
A graph is an object where one set of objects, vertexes, are joined together in some
arrangement by edges.
In the previous problem, our vertexes were landmasses, and they were joined by
bridges acting as edges.
A simplified diagram of the Königsberg graph is shown below.
See problem sheet question 6.
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CPMSOCCommon Themes - Graph Invariants
A common problem may be the need to create a graph with certain properties, such
as being traversable by the method from before, or asking if a certain graph has said
properties, perhaps by comparing it with other graphs.
We also may want to know about specific kinds of graphs.
We call a graph "simple" if each edge joins two different vertices, and no two vertices
have more than one edge between them.
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CPMSOCExample problem
Does there exist a graph with four vertices, three of which have 3 edges joined to
them, the fourth having 2 edges joined to it?
Note: if one edge connects a vertex to itself, we call it a "loop", and it counts as
joining twice to that vertex.
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CPMSOCExample problem - solution
Does there exist a simple graph with four vertices, three of which have 3 edges joined
to them, the fourth having 2 edges joined to it?
Lets count the number of edges here: each of 3 vertices has 3 "half-edges" in some
sense, as an edge joins to two vertices, and then a 4th vertex has 2 "half-edges",
giving a total 3 ∗ 1.5 + 2 ∗ 0.5 = 5.5 edges, so this graph cannot exist.
In general, notice that each edge connects to two vertices, so the total number of
edges joined to by vertices must be even, as each edge is double counted.
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CPMSOCVertex Degree Properties
We call the number of edges connected to a vertex that vertex’s degree.
As established, the total degree of graph is even. i.e. degree = 0 mod 2

If we think about vertexes with even degree, just considering them we get an even
contribution to the total degree of the graph.
Proof: if vertexes x1, x2, ..., xn each have even degree 2y1, 2y2, ..., 2yn, the sum of
their degrees is 2(y1 + y2 + ...+ yn) = 0 mod 2

So we can also deduce that the contribution from vertices with an odd degree is even.
If these vertexes are z1, z2, ..., zn with degrees 2w1 + 1, 2w2 + 1, ..., 2wn + 1, their total
degree is 2(w1 + w2 + ...+ wn) + 1×# of vertices. For this to be even, # of vertices
must be even.
Thus we have derived that in general, in a simple graph, the number of odd degree
vertices must be even, which provides a general solution to problems similar to the
last one.
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CPMSOCVertex Degree Properties Example
Consider the graph below. Notice that the even degree vertices contribute 6 to the
total degree, which is even. Since the odd vertices each contribute an odd amount to
the total degree, we need an even number of them to keep the total degree even, and
indeed we do have 2 odd vertices.
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CPMSOCGraph Walks
Suppose we have a graph G. How many ways are there to travel along edges to get
between two connected points?
Note: here, connected means that there is at least one way to get between the points.
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CPMSOCGraph Walks
Suppose we have a graph G. How many ways are there to travel along edges to get
between two connected points?
Note: here, connected means that there is at least one way to get between the points.
Solution: An infinite amount!
For example, since the points are connected, I can just travel along this walk 2n+ 1
times and always end on my desired point.
So maybe a more interesting question is how many ways can I travel between two
points, using at most n steps.
Note: here, by n steps, we mean traversing across n edges in total.
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CPMSOCGraph Walks
How many ways can I travel between two points in graph G, using at most n steps?
This is equivalent to asking how many ways I can do it in exactly k steps, and then
summing the answers from k = 1 up to n.
Well then firstly, how many ways can I travel between two points in a graph in 1 step?
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CPMSOCGraph Walks
How many ways can I travel between two points in graph G, using at most n steps?
This is equivalent to asking how many ways I can do it in exactly k steps, and then
summing the answers from k = 1 up to n.
Well then firstly, how many ways can I travel between two points in a graph in 1 step?
Solution: Exactly how many edges join those vertices! For example in the graph
shown here we can travel between vertexes 4 and 5 with 1 step only 1 way, as they
are joined by 1 edge.
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CPMSOCGraph Walks
How about 2 steps? Hopefully we can establish an inductive pattern that relies on
taking 1 step twice.
Don’t worry about a nice solution, just think about how given a graph, say the one
below, we could count all 2 step walks between vertices, e.g. vertices 2 and 4.
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CPMSOCGraph Walks
How about 2 steps? Hopefully we can establish an inductive pattern that relies on
taking 1 step twice.
Don’t worry about a nice solution, just think about how given a graph, say the one
below, we could count all 2 step walks between vertices, e.g. vertices 2 and 4.
Solution: we keep track of all vertices that can be reached by 1 step, and then find
how many of those can reach 4 with 1 step and sum them up! So here 3, 5, and 1
can be reached from 2 in 1 step in 1 way each, but only 3 and 5 can reach 4 in 1 step
in 1 way, so the number of 2 step walks from 2 to 4 is 1 + 1 = 2.
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CPMSOCGraph Walks
xcSo far we have described a lengthy process that seems brute-forced and difficult to
remember.
We are taking the number of edges between the starting node and each other node,
and then for each of those nodes we will multiply the number of ways to get to the
ending node, and then sum the total.
Note: possibly some extra thought here is required for why we need to specify
multiplication, and it relies on having extra edges between nodes, but accounting for
this case is useful later.
Thinking of alternative representations of things in math is always good, so maybe
since we have a lot of numbers to keep track of, we can store them in vectors.
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CPMSOCAdjacency Vectors
Let v2− be the vector of the number of edges joining vertex 2 to each other vertex,
and v−4 the vector of the number of edges joining each vertex to vertex 4. For
example again in this graph 2 joins to vertexes 1, 3, and 5 once each, and 0 times to

vertexes 2, 4 and 6 have: v2− =



1
0
1
0
1
0

. Also v−4 =



0
0
1
0
1
1


We now notice our calculation from before is the dot product of these two,
v2− · v−4 = 0 + 0 + 1 + 0 + 1 + 0 = 2.
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CPMSOCAdjacency Vectors, Alternative Example
For this other graph, there are 1, 2, and 3 ways to get from vertex i to j, k, and l, and
4, 5, and 6 ways to get from vertices j, k, and l to vertex m. Using adjacency vectors
with components in the order i, j, k, l, and then m we have:

vi− =


0
1
2
3
0

. Also v−m =


0
4
5
6
0

. vi− · v−m = 0 + 4 + 10 + 18 + 0 = 32.

So there are 32 length 2 walks from i to m.
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CPMSOCAdjacency Vectors
Using vectors may seem strange, but the benefit of this becomes clearer once we
look at longer walks of length k. If we know how many ways there are to get from our
starting vertex to every vertex in the graph in k − 1 steps, again stored in a vector,
then taking the dot product with our adjacency vector v−end from before gives us the
number of ways to get to the end in k steps.
This means that as we calculate larger and larger walks, we really want to calculate
the walks between any two pairs of vertices, because they seem necessary for the
later calculations.
Let us do an example by listing out all adjacency vectors for this graph.
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CPMSOCAdjacency Matrices
Let us do an example by listing out all adjacency vectors for this graph.
We store these vectors in a list, forming a 2D array called a "matrix". Often, the
matrix will share names with the graph, so here we will call it G.

G =



0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


Notice that the entry at the ith row and the jth column (ijth entry) gives the number
of edges between vertexes i and j. Because the graph is simple, all entries are 0 or 1
and all "main diagonal" entries are 0. We can spot v2− from before is the 2nd column,
and v−4 is the 4th. The graph is symmetric because edges from i to j are also from j
to i, so v2− is also the 2nd row.
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CPMSOCMatrix-Vector Multiplication
If we want to see all the length 1 walks between vertexes i, j we look at the ijth entry
in the adjacency matrix. For all length 2 walks between a particular vertex k and
vertex j, we need to take the dot products of each adjacency row vector in the matrix
with the adjacency vector vk. An example is shown for k = 2.

Gvk =



0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0





1
0
1
0
1
0

 =



1
3
0
2
1
0


For example, entry 2 of the output vector is the dot product of the 2nd row with the
column vector, and 1 ∗ 1 + 0 + 1 ∗ 1 + 0 + 1 ∗ 1 + 0 = 3.
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CPMSOCMatrix-Matrix Multiplication
Recall that for length k walks we wanted knowledge about walks between any two
vertices of length k − 1, so we need to multiply this matrix by all adjacency vectors.
An object we established stored all these vectors was the matrix itself, so we now
define matrix-matrix multiplication.

G×G =



0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0





0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


Here our output column vectors will be the vectors we would have gotten by doing
matrix-vector multiplication from before with just one column of the second matrix.
We can demonstrate the ijth entry of the new matrix will be the dot product of the ith
row of the first matrix with the jth column of the second.

Zac (with Cyril) Mathematics Workshop 6/3/23 24 / 31



CPMSOCMatrix-Matrix Multiplication
Let us demonstrate this computation with a smaller example.
In some applications, matrices are no longer symmetric, so we specify this kind of
multiplication uses the rows of the first matrix, and the columns of the second matrix.(
0 1
2 3

)(
4 5
6 7

)
=

(
0 ∗ 4 + 1 ∗ 6 0 ∗ 5 + 1 ∗ 7
2 ∗ 4 + 3 ∗ 6 2 ∗ 5 + 3 ∗ 7

)
=

(
6 7
26 31

)
The ijth entry of this new matrix will be the dot product of the ith row of the first
matrix with the jth column of the second.
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CPMSOCLength k Walks

G2 =



2 1 1 1 1 0
1 3 0 2 1 0
1 0 2 0 2 1
1 2 0 3 0 0
1 1 2 0 3 1
0 0 1 0 1 1


Now this matrix gives us the length 2 walks from i to j in the ijth entry.
To get the length 3 walks to vertex k, we multiply by vk, the adjacency vector, and the
output vector gives length 3 walks from each vertex to vertex k. Doing this for all
vectors involves multiplying again by G.
This is now getting quite complicated, and we should look back over everything we
have done, but from this point we can begin to see an amazing fact:
The ijth entry of Gk gives the number of walks between i and j of length k.
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CPMSOCLength k Walks
Good skeptics at this point may point out that this is a lot of adding and multiplying,
and that this is still a brute forced solution, even if it is now written possibly more
compactly.
Thankfully, there are actually some magical methods to calculate Gk generally in
many cases much faster than by typical matrix-matrix multiplication.
For more information on this in particular you can look up diagonalisation of matrices,
or if you are feeling especially cheeky Jordan Block matrices.
Another method to getting large matrix powers is to square the matrices again and
again, i.e. A2n+k = A22...2AA...A with n squarings and then k regular multiplications.
Similar more efficient algorithms can be made.
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CPMSOCWalks with lengths ≤ n
Back to the original question however, we have so far established that the number of
length k walks in a graph between points i and j is given by the ijth entry in the kth
power of the adjacency matrix, Ak.
As a sum now, all walks ≤ n would be given by the ijth entry of the matrix
An +An−1 + ...+A2 +A =

∑n
k=1A

k

Note that when summing together these matrices, much like vectors each entry of
the matrix is added to the corresponding entry of the next matrix, so indeed at the
end our final matrix accounts for all walks of length ≤ n between vertexes i and j at
entry ij.

Zac (with Cyril) Mathematics Workshop 6/3/23 28 / 31



CPMSOCWhere from here?
We have really just introduced graphs, and established how to use linear algebra to
analyse one major problem, what else can you look at?
Graph traversals: Euler paths, Hamiltonian paths
Special types of graphs: bipartite, trees, directed (cyclic, acyclic), weighted
Graph topology: isomorphisms, enumeration
Algorithms on graphs: Dijkstra’s algorithm, colouring algorithms

Zac (with Cyril) Mathematics Workshop 6/3/23 29 / 31



CPMSOCAttendance form :D
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CPMSOCFurther events
Please join us for:

Maths workshop in two weeks
Social session tomorrow
Programming workshop next week
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