Mathematics Workshop
 Functional Equations

Zac and Cyril

Table of contents

1 Introduction

- Welcome
- Functional Equations
- Function Properties Refresher
- Substitutions

■ Particular Solutions

- Symmetry

■ Injectivity, Surjectivity

- Cyclic Functions

■ Continuity
2 Thanks for coming!

- Food acquisition

Welcome

■ Programming workshop next week

- Mathematics workshop the week after

■ Try some problems on the sheet or https://t2maths.unswcpmsoc.com/
■ Slides will be uploaded on website (unswcpmsoc.com)

Attendance form

Functional Equations

■ A functional equation is an equation where rather than searching for an unknown number or value, we look for an unknown function.
■ For example, we may wish to find some or all functions satisfying certain properties like:
■ $f(x y)=f(x) f(y)$
■ $f(x y)=f(x+y)$

- $f(x)+f(y)=f(x y)$

■ Solving functional equations can get very bashy, but each step can be reasonable.

Functional Equations Example

$■$ Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}, f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{Q}$.

Functional Equations Solution

$■$ Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}, f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{Q}$.
■ From other areas of math we may recognise this relationship is linear, and hence guess the set of functions $f(x)=c x$ for some real c. How can we show this covers all solutions?

Functional Equations Solution

$■$ Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}, f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{Q}$.
■ This is a famous and important functional equation known as Cauchy's functional equation.
■ From other areas of math we may recognise this relationship is linear, and hence guess the set of functions $f(x)=c x$ for some real c. How can we show this covers all solutions?
$■$ We can consider an arbitrary input $a / b=(1+1+1+\ldots) / b$.
■ $f(a / b)=f(1 / b)+f((a-1) / b)=f(1 / b)+f(1 / b)+f((a-2) / b)=a f(1 / b)$.
■ We also know $f(1 / b)+f(1 / b)+\ldots+f(1 / b) b$ times gives $f(1)$.
\square We then get $f(a / b)=(a / b) f(1)$. Since $f(1)$ is constant and arbitrary, we get the desired solution.

- Note we cannot break a into 1 's if it is not an integer.

Function Properties Refresher

$■$ We notice our proof in the last problem relied on use of rationals as specified in the question description. Function definitions are often denoted in the form $f: A \rightarrow B$, along with other properties. Here A and B are sets named the domain and codomain respectively. The function f has a value in B associated with every value in A, but not necessarily every value in B is associated with a value in A.
■ Changing the domain and codomain can significantly alter a functional equation, from being trivial to nearly impossible, so pay attention the these specifications!

Substitutions

- A common idea in functional equations is substitution of values. For particular values this may include substituting 0 or 1 , as these often give nice additive or multiplicative properties, or where multiple variables are involved, say x and y, we may make them equal, or make $x=-y$, or $x=1 / y$, or any number of other useful substitutions depending on the function properties.

Substitutions Example 1

$■$ Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}, f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y$
■ What substitutions might help? List them!

Substitutions Example 1 Solution

■ Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}, f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y$

- What substitutions might help? List them!
- A particularly nice substitution will cancel things out in the equation... Examples here could be $x^{2}=y$ or $y=-f(x)$. In this case both substitutions prove helpful.
■ We get $f\left(f(x)+x^{2}\right)=f(0)+4 f(x) x^{2}$ and $f(0)=f\left(x^{2}+f(x)\right)-4 f(x)^{2}$.

Substitutions Example 1 Solution

$■$ Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}, f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y$
$■$ We get $f\left(f(x)+x^{2}\right)=f(0)+4 f(x) x^{2}$ and $f(0)=f\left(x^{2}+f(x)\right)-4 f(x)^{2}$.
■ We now have two equations with an annoying $f\left(x^{2}+f(x)\right)$ term, so we may solve simultaneously to remove this, yielding:
■ $f(0)=f(0)+4 f(x) x^{2}-4 f(x)^{2}$.
■ This results in $f(x)^{2}=f(x) x^{2}$, so that either $f(x)=0$ or $f(x)=x^{2}$, and we are done.
■ Note here that the specified continuity condition prevents annoying behaviour for piece-wise functions which are sometimes 0 and sometimes x^{2}, which would be far more annoying to deal with.

Substitutions Example 2

■ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(x+y^{2}\right)=f(y)+f\left(x^{2}+y\right)$.

Substitutions Example 2 Solution

■ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(x+y^{2}\right)=f(y)+f\left(x^{2}+y\right)$.
■ This one isn't too bad, we can respectively substitute $x=0$ then $y=0$ and get:
$\square f\left(y^{2}\right)=f(y)+f(y)=2 f(y)$.

- $f(x)=f(0)+f\left(x^{2}\right)$.

■ Relabelling x as y in the second equation because x is simply a dummy variable we have:
■ $f(y)=f(0)+f\left(y^{2}\right)$.
■ Removing that irritating $f\left(y^{2}\right)$ term simultaneously we find $f(y)=-f(0)$. We want to now check if there is a restriction on possible values of $f(0)$.
■ We sub $x=y=0$ and get $f(0)=f(0)+f(0) \Longrightarrow 0=f(0)$, so the only function f is the zero function $f(x)=0$.

Particular Solutions

■ Some questions don't ask for all functions satisfying some property, which often requires a lot of justification, they instead ask for just one example of such a function satisfying a property. In these cases it can help to think intuitively about the properties of satisfactory functions, and often simply making an educated guess about a type of function can solve the problem.
■ Important properties to remember are ideas about logarithm rules, exponent rules, linearity, and polynomial properties.
■ With that being said, particular solutions can sometimes help us find all solutions to a functional equation by substituting $f(x)=h(x)+p(x)$, where $p(x)$ is our particular solution, and solving for $h(x)$ (try problem 4 on the sheet).

Particular Solutions Example

AIC

■ Find a function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x+y)^{y}=f(y)^{x+y}$.

Particular Solutions Example Solution

\square Find a function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x+y)^{y}=f(y)^{x+y}$.
■ We can notice a symmetry between swapping the input of the function and the exponent. In this case since exponents distribute multiplicatively (mm words), we may guess $f(x)=e^{x}$ may be a solution.
\square Checking, we find the left hand side is $e^{x y+y^{2}}$, and the right $e^{y x+y^{2}}$, which are equivalent and the problem is solved.

Symmetry

Looks for points in functional equations with and without symmetry between variables, then try and write two (or more) equations

Symmetry

Looks for points in functional equations with and without symmetry between variables, then try and write two (or more) equations

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all real x, y,

$$
f(f(x)+f(y))=f(f(x))+f(x) y^{2}+f(f(y))
$$

Symmetry

Looks for points in functional equations with and without symmetry between variables, then try and write two (or more) equations

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all real x, y,

$$
f(f(x)+f(y))=f(f(x))+f(x) y^{2}+f(f(y))
$$

Excluding the middle RHS term, everything is symmetric: let's swap variables:

$$
\begin{aligned}
& f(f(x)+f(y))=f(f(x))+f(x) y^{2}+f(f(y)) \\
& f(f(x)+f(y))=f(f(y))+f(y) x^{2}+f(f(x))
\end{aligned}
$$

Subtracting the equations, we get $f(x) y^{2}=f(y) x^{2}$. Substitute $y=1$ and we obtain $f(x)=f(1) x^{2}$. Substitute $f(x)=A x^{2}$ back into our equation (with $y=0$) to find only $A=0$ and $A=1$ work.

A slightly harder problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

A slightly harder problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

Ew. Let's try a substitution!

A slightly harder problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

Ew. Let's try a substitution! $y=0$:

$$
f\left(x^{2}\right)=f\left(f(x)^{2}-2 x f(0)\right) .
$$

Let's get rid of those enclosing $f^{\prime} s$!

$$
x^{2}=f(x)^{2}-2 x f(0)
$$

And now substitute back in to test which functions work (exercise for the reader cause I can't be bothered solving)!

A slightly harder problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

Ew. Let's try a substitution! $y=0$:

$$
f\left(x^{2}\right)=f\left(f(x)^{2}-2 x f(0)\right) .
$$

Let's get rid of those enclosing $f^{\prime} s$!

$$
x^{2}=f(x)^{2}-2 x f(0)
$$

And now substitute back in to test which functions work (exercise for the reader cause I can't be bothered solving)! What did I do wrong?

A slightly harder problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

Ew. Let's try a substitution! $y=0$:

$$
f\left(x^{2}\right)=f\left(f(x)^{2}-2 x f(0)\right) .
$$

Let's get rid of those enclosing $f^{\prime} s$!

$$
x^{2}=f(x)^{2}-2 x f(0)
$$

And now substitute back in to test which functions work (exercise for the reader cause I can't be bothered solving)!
What did I do wrong? I assumed $f(a)=f(b) \Longrightarrow a=b$

Injectivity and Surjectivity

Injectivity: Each input takes on a unique value

$$
f(a)=f(b) \Longrightarrow a=b
$$

Surjectivity: Each codomain in the output is obtained
What's the use case?

Injectivity and Surjectivity

Injectivity: Each input takes on a unique value

$$
f(a)=f(b) \Longrightarrow a=b
$$

Surjectivity: Each codomain in the output is obtained
What's the use case?
Injectivity allows us to get rid of enclosing f 's Surjectivity allows us to substitute $f(x)$ with x.

Back to our problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

Back to our problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

Notice we may let $x=0$ and "vary" y.

Back to our problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ for $x \neq 0$ and, for all real x, y :

$$
f\left(x^{2}\right)+y f(y)=f\left(f(x+y)^{2}-2 x f(y)\right) .
$$

Notice we may let $x=0$ and "vary" y.
i.e. Assume $f(a)=f(b)$. Then substitute $y=a$ and then $y=b$:

$$
\begin{aligned}
& f(0)+a f(a)=f\left(f(a)^{2}-2 \cdot 0 \cdot f(a)\right) \\
& f(0)+b f(a)=f\left(f(a)^{2}-2 \cdot 0 \cdot f(a)\right)
\end{aligned}
$$

Same terms cancel out, so we are left with $a=b$ (if $f(a)=f(b)=0, a=b=0$). Now our mistake is fixed!

Cyclic Functions

■ We may have noticed that a common theme in substitution is making multiple substitutions and then solving different equations simultaneously.
■ One particular case where this is helpful is where so-called cyclic functions are present.
■ These are functions where repeated applications cycle through a set of values, i.e.

- $f(f(f(x)))=x$ is a cyclic function of order 3, because applying $f(x)$ three times cycles through the values $x, f(x), f(f(x))$ before coming back to x.
\square Common examples of such functions include $1 / x$ and $1-x$ of order 2, and $\frac{1}{1-x}$ and $1-\frac{1}{x}$ of order 3.
■ To solve some problems involving cyclic functions, we can just repeatedly feed the cyclic function back into itself until we have enough simultaneous equations to solve the problem.

Cyclic Functions Example

ATC CLUBS

■ Find all $f: \mathbb{R}-\{0,1\} \rightarrow \mathbb{R}, f(x)+f\left(\frac{1}{1-x}\right)=\frac{1}{x}$.

Cyclic Functions Example Solution

$■$ Find all $f: \mathbb{R}-\{0,1\} \rightarrow \mathbb{R}, f(x)+f\left(\frac{1}{1-x}\right)=\frac{1}{x}$.
■ In this case, we want to use the cyclic property of $\frac{1}{1-x}$ in our substitution.
\square We get $f\left(\frac{1}{1-x}\right)+f\left(\frac{1-x}{-x}\right)=1-x$.

- Substituting again we get:

■ $f\left(\frac{1-x}{-x}\right)+f(x)=1-\frac{1}{1-x}$.
■ We can now solve simultaneously for $f(x)$.

Cyclic Functions Example Solution

\square Find all $f: \mathbb{R}-\{0,1\} \rightarrow \mathbb{R}, f(x)+f\left(\frac{1}{1-x}\right)=\frac{1}{x}$.
■ $f\left(\frac{1}{1-x}\right)+f\left(\frac{1-x}{-x}\right)=1-x \cdot f\left(\frac{1-x}{-x}\right)+f(x)=1-\frac{1}{1-x}$.

- We get $\frac{1}{x}-f(x)+f\left(\frac{1-x}{-x}\right)=1-x$ from the first two equations.
\square From this and the third we get $1-x-\frac{1}{x}+f(x)+f(x)=1-\frac{1}{1-x}$.
- Thus, we have $f(x)=\frac{1}{2}\left(x+\frac{1}{x}-\frac{1}{1-x}\right)$.

A recap of techniques

■ Substitute, and don't stop substituting!
■ Look closely at the domain and codomain. They might restrict substitutions or function values.
■ For one variable functional equations, look for cyclic functions or "order-reducing" properties
■ For integer/rational domains, try expressing functions in terms of constant offsets (e.g. $f(x)=f(x-1)$).

■ For getting rid of second and higher order terms (e.g. $f(f(x))$), try substituting $f(x)$, proving injectivity/surjectivity or exploiting symmetry (the last question on the sheet uses all of these!).
■ Don't tunnel vision on "lower-order" functional equations - they may be too weak!

Continuity

■ An important property of functions we may specify is that they be continuous.

- Recall that continuity of a function means that the limit of the function at any point is equal to the value of the function at that point.
$■$ A common use of this is the extension of functional equations from \mathbb{Q} to \mathbb{R}.

Continuity Example

■ Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}, f(x+y)=f(x)+f(y)$.

Continuity Example Solution

■ Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}, f(x+y)=f(x)+f(y)$.
■ This is the Cauchy functional equation again, but now in \mathbb{R} rather than \mathbb{Q} !
$■$ We have already solved the subproblem on the domain $\mathbb{Q} \subset \mathbb{R}$ and found that $\forall x \in \mathbb{Q}, f(x)=c x$ for some real $c(c$ being real extends readily from our previous solution).
■ Now, since any real number can be approached by arbitrarily close rationals, and since these rationals get arbitrarily closer to c times this real, by the continuity of our function we get that $f(x)=c x \forall x \in \mathbb{R}$ for some $c \in \mathbb{R}$.
■ This can be done more carefully using real analysis, but we won't cover that here.

Attendance form :D

ATC

Further events

Please join us for:

- Maths workshop in two weeks

■ Social session on Friday
■ Programming workshop next week

