Mathematics Workshop
 Generating functions

Cyril and Smit

Table of contents

1 Welcome!

- Introduction
- Attendance form

2 Generating functions

- Generating functions in the wild

■ Generalised binomial theorem

- Example problems

3 Thanks for coming!

■ Further events

Introduction

■ Try out problems here: https://t2maths.unswcpmsoc.com/

- Integration Bee tomorrow!

■ Next (programming) workshop is in flex-week
■ Next mathematics workshop is the week afterwards
■ Pizza (or Subway) time! Later

Attendance form

Queue Are Code

Playing with fractions

What happens if you enter $\frac{1}{81}$ into a calculator?

Playing with fractions

What happens if you enter $\frac{1}{81}$ into a calculator?

0.0123456790...

Playing with fractions

What happens if you enter $\frac{1}{81}$ into a calculator?

0.0123456790...

This looks suspiciously like it just wants to keep counting upwards in digits

Playing with fractions

What happens if you enter $\frac{1}{81}$ into a calculator?

0.0123456790...

This looks suspiciously like it just wants to keep counting upwards in digits

In fact is IS counting upwards forever if you take carrying into account

Another example

What about $\frac{1}{49}$?

Another example

What about $\frac{1}{49}$?
0.0204081632653...

Another example

What about $\frac{1}{49}$?
0.0204081632653...

Again like last time, this doesn't just LOOK like the powers of 2, this IS the powers of 2 with carrying

Last fraction (this time very epic)

What about $\frac{1}{9899}$?

Last fraction (this time very epic)

What about $\frac{1}{9899}$?
0.000101020305081321345590...

Last fraction (this time very epic)

What about $\frac{1}{9899}$?
0.000101020305081321345590...

Yep, it's the Fibonacci series

Last fraction (this time very epic)

Yep, it's the Fibonacci series
While this might just look like cool trivia, we want to mathematically understand why this happens, and how arbitrary sequences can be encoded in this way

Last fraction (this time very epic)

What about $\frac{1}{9899}$?
0.000101020305081321345590...

Yep, it's the Fibonacci series
While this might just look like cool trivia, we want to mathematically understand why this happens, and how arbitrary sequences can be encoded in this way

The stuff we learn along the way turns out to be useful for solving combinatorics problems too

Fractions are basically just polynomials \quad 用 cPmsoc

ATC ctubs

So far we've been thinking about the decimal expansions of fractions, but that's a very base-10-centric concept

Fractions are basically just polynomials

So far we've been thinking about the decimal expansions of fractions, but that's a very base-10-centric concept

A fraction, e.g. 0.3485 is just $0+3 \times 0.1+4 \times 0.1^{2}+8 \times 0.1^{3}+5 \times 0.1^{4}$ or more abstractly $f(0.1)$ where $f(x)=0+3 x+4 x^{2}+8 x^{3}+5 x^{4}$

Fractions are basically just polynomials C PD CPMsoc

So far we've been thinking about the decimal expansions of fractions, but that's a very base-10-centric concept

A fraction, e.g. 0.3485 is just $0+3 \times 0.1+4 \times 0.1^{2}+8 \times 0.1^{3}+5 \times 0.1^{4}$ or more abstractly $f(0.1)$ where $f(x)=0+3 x+4 x^{2}+8 x^{3}+5 x^{4}$

The above fractions are infinitely long polynomials (also referred to as infinite power series or formal power series) with 0.1 or 0.01 as their input

Fractions are basically just polynomials $C P D$ CPMsoc

So far we've been thinking about the decimal expansions of fractions, but that's a very base-10-centric concept

A fraction, e.g. 0.3485 is just $0+3 \times 0.1+4 \times 0.1^{2}+8 \times 0.1^{3}+5 \times 0.1^{4}$ or more abstractly $f(0.1)$ where $f(x)=0+3 x+4 x^{2}+8 x^{3}+5 x^{4}$

The above fractions are infinitely long polynomials (also referred to as infinite power series or formal power series) with 0.1 or 0.01 as their input

For example, we basically demonstrated how $1 / 49=f(0.01)$ where $f(x)=2 x+4 x^{2}+8 x^{3}+16 x^{4}+\ldots=\sum_{n=1}^{\infty} 2^{n} x^{n}$

Geometric series

One of the simplest polynomials is one where all coefficients are 1. For example:

$$
f(x)=1+x+x^{2}+x^{3}+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}
$$

Geometric series

One of the simplest polynomials is one where all coefficients are 1. For example:

$$
f(x)=1+x+x^{2}+x^{3}+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}
$$

A common formula is that this can be more simply written as

$$
f(x)=\frac{1-x^{n+1}}{1-x}
$$

Geometric series

One of the simplest polynomials is one where all coefficients are 1. For example:

$$
f(x)=1+x+x^{2}+x^{3}+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}
$$

A common formula is that this can be more simply written as

$$
f(x)=\frac{1-x^{n+1}}{1-x}
$$

For an infinite polynomial, convergence only occurs when $|x|<1$. Here, $x^{n+1} \rightarrow 0$, hence the infinite power series can be written as:

$$
\frac{1}{1-x}
$$

Generating functions

Generating functions are ultimately ways of encapsulating (or "generating") sequences of numbers using functions. Traditionally, this a polynomial, or power series.

The above function generates a sequence of just 1's:

$$
\sum_{k=0}^{\infty} 1 x^{k}
$$

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Add functions
$\rightarrow \quad$ Adding sequences element-wise

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Add functions
Multiply function by constant
\rightarrow Adding sequences element-wise
\rightarrow Multiply each element by constant

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Add functions

Multiply function by constant
Multiply two generating functions
\rightarrow Adding sequences element-wise
\rightarrow Multiply each element by constant
\rightarrow Convolution of elements

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Add functions
Multiply function by constant
Multiply two generating functions
Multiply by x
\rightarrow Adding sequences element-wise
\rightarrow Multiply each element by constant
\rightarrow Convolution of elements
\rightarrow Shift elements to right

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Add functions
Multiply function by constant
Multiply two generating functions
Multiply by x
Subtract first element and divide by x
\rightarrow Adding sequences element-wise
\rightarrow Multiply each element by constant
\rightarrow Convolution of elements
\rightarrow Shift elements to right
\rightarrow Shift elements to left

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Add functions
Multiply function by constant
Multiply two generating functions
Multiply by x
Subtract first element and divide by x
Differentiate generating function
\rightarrow Adding sequences element-wise
\rightarrow Multiply each element by constant
\rightarrow Convolution of elements
\rightarrow Shift elements to right
\rightarrow Shift elements to left
\rightarrow Multiply each element by index and left-shift

Manipulating generating functions

There are several useful ways to manipulate generating functions. Practice and intuition for these skills can allow you to build generating functions for several kinds of sequences.

Add functions
Multiply function by constant
Multiply two generating functions
Multiply by x
Subtract first element and divide by x
Differentiate generating function Integrate generating function
\rightarrow Adding sequences element-wise
\rightarrow Multiply each element by constant
\rightarrow Convolution of elements
\rightarrow Shift elements to right
\rightarrow Shift elements to left
\rightarrow Multiply each element by index and left-shift
\rightarrow Right-shift and divide each element by index

Examples of generating functions

Make use of the previous techniques to derive generating functions for:

Examples of generating functions

Make use of the previous techniques to derive generating functions for:
■ The counting numbers

Examples of generating functions

Make use of the previous techniques to derive generating functions for:
■ The counting numbers

$$
\frac{x}{(1-x)^{2}}
$$

Examples of generating functions

Make use of the previous techniques to derive generating functions for:
■ The counting numbers

$$
\frac{x}{(1-x)^{2}}
$$

- The triangle numbers

Examples of generating functions

Make use of the previous techniques to derive generating functions for:
■ The counting numbers

$$
\frac{x}{(1-x)^{2}}
$$

■ The triangle numbers

$$
\frac{x}{(1-x)^{3}}
$$

Examples of generating functions

Make use of the previous techniques to derive generating functions for:
■ The counting numbers

$$
\frac{x}{(1-x)^{2}}
$$

■ The triangle numbers

$$
\frac{x}{(1-x)^{3}}
$$

- The powers of 2

Examples of generating functions

Make use of the previous techniques to derive generating functions for:
■ The counting numbers

$$
\frac{x}{(1-x)^{2}}
$$

■ The triangle numbers

$$
\frac{x}{(1-x)^{3}}
$$

■ The powers of 2

$$
\frac{1}{1-2 x}
$$

Examples of generating functions

Make use of the previous techniques to derive generating functions for:

- The counting numbers

$$
\frac{x}{(1-x)^{2}}
$$

■ The triangle numbers

$$
\frac{x}{(1-x)^{3}}
$$

- The powers of 2

$$
\frac{1}{1-2 x}
$$

■ The square numbers

Examples of generating functions

Make use of the previous techniques to derive generating functions for:
■ The counting numbers

$$
\frac{x}{(1-x)^{2}}
$$

■ The triangle numbers

$$
\frac{x}{(1-x)^{3}}
$$

- The powers of 2

$$
\frac{1}{1-2 x}
$$

■ The square numbers

$$
\frac{x(x+1)}{(1-x)^{3}}
$$

Examples of generating functions

AIC

■ The Fibonacci numbers

Examples of generating functions

AIC

■ The Fibonacci numbers

$$
\frac{x}{1-x-x^{2}}
$$

Examples of generating functions

■ The Fibonacci numbers

$$
\frac{x}{1-x-x^{2}}
$$

Note that substituting $x=0.01$ gives $\frac{100}{9899}$. Look familiar???

Extracting sequence elements

So far we've shown some tricks to find a closed form for a generating function. What if we want to find a particular coefficient?

Extracting sequence elements

So far we've shown some tricks to find a closed form for a generating function. What if we want to find a particular coefficient?

Decompose generating function into partial fractions:

$$
\frac{1}{(1-x)\left(1-x-x^{2}\right)}=\frac{x}{1-x-x^{2}}+\frac{2}{1-x-x^{2}}-\frac{1}{1-x}
$$

Extracting sequence elements

So far we've shown some tricks to find a closed form for a generating function. What if we want to find a particular coefficient?

Decompose generating function into partial fractions:

$$
\frac{1}{(1-x)\left(1-x-x^{2}\right)}=\frac{x}{1-x-x^{2}}+\frac{2}{1-x-x^{2}}-\frac{1}{1-x}
$$

Therefore 10th element is 9th fibonacci number +2 times 10th fibonacci number - 1

Extracting sequence elements

So far we've shown some tricks to find a closed form for a generating function. What if we want to find a particular coefficient?

Decompose generating function into partial fractions:

$$
\frac{1}{(1-x)\left(1-x-x^{2}\right)}=\frac{x}{1-x-x^{2}}+\frac{2}{1-x-x^{2}}-\frac{1}{1-x}
$$

Therefore 10th element is 9th fibonacci number +2 times 10th fibonacci number - 1
Brute force approach: repeatedly differentiate and evaluate at 0 .

$$
\begin{aligned}
& G(x)=c_{0}+c_{1} x_{1}+\cdots+c_{n-1} x^{n-1} \leftarrow \text { killed by differentiation } \\
& \qquad+c_{n} x^{n} \\
& \text { killed by evaluation } \rightarrow+c_{n+1} x^{n+1}+\cdots
\end{aligned}
$$

Newton＇s generalised binomial theorem C⿵⺆⿻二丨力八 сРмsoc

We define $(x)_{k}=x \cdot(x-1) \cdots(x-k+1)$
e．g．$(-4)_{4}=(-4)(-5)(-6)(-7)=840$
Then we extend $\binom{n}{k}=\frac{(n)_{k}}{k!}$ and use it in the binomial theorem $\left((x+y)^{n}=\sum_{k=0}^{\infty}\binom{n}{k} x^{k} y^{n-k}\right)$

Newton's generalised binomial theorem

We define $(x)_{k}=x \cdot(x-1) \cdots(x-k+1)$
e.g. $(-4)_{4}=(-4)(-5)(-6)(-7)=840$

Then we extend $\binom{n}{k}=\frac{(n)_{k}}{k!}$ and use it in the binomial theorem $\left((x+y)^{n}=\sum_{k=0}^{\infty}\binom{n}{k} x^{k} y^{n-k}\right)$

$$
\begin{aligned}
(x+1)^{-3} & =\binom{-3}{0}+\binom{-3}{1} x^{1}+\binom{-3}{2} x^{2}+\cdots \\
& =\binom{2}{0}-\binom{3}{1} x^{1}+\binom{4}{2} x^{2}-\cdots
\end{aligned}
$$

This is hard to motivate and see the applicability of without a problem.

Subway time now???

How many ways can we buy n subway sandwiches which can be vegetarian, meat or a cookie?

Subway time now???

How many ways can we buy n subway sandwiches which can be vegetarian, meat or a cookie? Wrong answers:

■ $\binom{n}{3}$, we're not choosing three things, but items from three categories
■ 3^{n}, order doesn't matter, we distinguish only by the number of each sandwich type

Subway time now???

How many ways can we buy n subway sandwiches which can be vegetarian, meat or a cookie? Wrong answers:

- ($\left.\begin{array}{l}n \\ 3\end{array}\right)$, we're not choosing three things, but items from three categories

■ 3^{n}, order doesn't matter, we distinguish only by the number of each sandwich type Stars and bars method: consider n "stars" and 2 "bars" - regions between bars are categories, stars are sandwiches: $* * * *|* * * * * *| * * * *$. Out of $n+2$ positions, 2 must be chosen for the bars, so $\binom{n+2}{2}$.

Generating Sandwiches

How many ways can we choose n sandwiches from 3 different flavours?

Generating Sandwiches

How many ways can we choose n sandwiches from 3 different flavours?
Consider a generating function where each coefficient c_{k} is the number of ways to choose k sandwiches from 3 flavours:

$$
\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right)
$$

Generating Sandwiches

How many ways can we choose n sandwiches from 3 different flavours?
Consider a generating function where each coefficient c_{k} is the number of ways to choose k sandwiches from 3 flavours:

$$
\begin{aligned}
\left(1+x+x^{2}\right. & +\cdots)\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right) \\
& =\frac{1}{1-x} \frac{1}{1-x} \frac{1}{1-x}=\frac{1}{(1-x)^{3}}
\end{aligned}
$$

Generating Sandwiches

How many ways can we choose n sandwiches from 3 different flavours?
Consider a generating function where each coefficient c_{k} is the number of ways to choose k sandwiches from 3 flavours:

$$
\begin{gathered}
\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right) \\
=\frac{1}{1-x} \frac{1}{1-x} \frac{1}{1-x}=\frac{1}{(1-x)^{3}} \\
=\sum_{k=0}^{\infty}\binom{-3}{k}(-x)^{k}=\sum_{k=0}^{\infty}\binom{k+2}{2} x^{k} .
\end{gathered}
$$

The number of ways to choose n sandwiches is the x^{n} coefficient.
How does this generalise (the formula for k different flavours is $\binom{n+k-1}{k}$ btw).

How Dicey

4 different 12 -sided dice are rolled, and the numbers face up are added together to obtain some score. How many different ways is a score of 24 achievable?

How Dicey

4 different 12 -sided dice are rolled, and the numbers face up are added together to obtain some score. How many different ways is a score of 24 achievable?

$$
\left(x+x^{2}+x^{3}+\cdots+x^{12}\right)
$$

How Dicey

4 different 12 -sided dice are rolled, and the numbers face up are added together to obtain some score. How many different ways is a score of 24 achievable?

$$
\left(x+x^{2}+x^{3}+\cdots+x^{12}\right)^{4}
$$

How Dicey

4 different 12 -sided dice are rolled, and the numbers face up are added together to obtain some score. How many different ways is a score of 24 achievable?

$$
\begin{aligned}
(x+ & \left.x^{2}+x^{3}+\cdots+x^{12}\right)^{4} \\
& =\left(\frac{x\left(1-x^{12}\right)}{(1-x)}\right)^{4}
\end{aligned}
$$

How Dicey

4 different 12 -sided dice are rolled, and the numbers face up are added together to obtain some score. How many different ways is a score of 24 achievable?

$$
\begin{gathered}
\left(x+x^{2}+x^{3}+\cdots+x^{12}\right)^{4} \\
=\left(\frac{x\left(1-x^{12}\right)}{(1-x)}\right)^{4} \\
=\frac{x^{4}\left(1-x^{12}\right)^{4}}{(1-x)^{4}}=x^{4}\left(1-4 x^{12}+6 x^{24}-4 x^{36}+x^{48}\right)(1-x)^{-4}
\end{gathered}
$$

How Dicey

4 different 12 -sided dice are rolled, and the numbers face up are added together to obtain some score. How many different ways is a score of 24 achievable?

$$
\begin{gathered}
\left(x+x^{2}+x^{3}+\cdots+x^{12}\right)^{4} \\
=\left(\frac{x\left(1-x^{12}\right)}{(1-x)}\right)^{4} \\
=\frac{x^{4}\left(1-x^{12}\right)^{4}}{(1-x)^{4}}=x^{4}\left(1-4 x^{12}+6 x^{24}-4 x^{36}+x^{48}\right)(1-x)^{-4} .
\end{gathered}
$$

x^{24} is only obtainable by multiplying the x^{4}, x^{0} and x^{20} terms or the x^{4}, x^{12} and x^{8} terms (respective to each factor:

$$
1 \times 1 \times\binom{ 23}{20}+1 \times-4 \times\binom{ 11}{8}=1111
$$

Some more ideas to consider

■ Differentiation/integration to extract coefficients
■ Evaluating at roots of unity (filters out $x^{k n}$ coefficients)

- Partial fraction decomposition

■ Substitute fractional powers for the generalised binomial theorem

Further events

Please join us for:
■ Integration bee tomorrow!
■ Rookie Code Rumble right now!
■ T2 Mathematics Competition right now!

