Mathematics Workshop Inequalities

David and Cyril

Table of contents

1 Introduction

■ Welcome
■ Something different...
2 Inequalities

- Square number inequality
- AM-GM inequality

■ Triangle substitution
■ Cauchy-Schwartz inequality

- Jensen's inequality
- Rearrangement inequality
- Multinomial degrees

3 Thanks for coming!
■ Food acquisition

Welcome

■ Programming workshop next week
■ And that's a wrap! I think
■ Try some problems: https://t2maths.unswcpmsoc.com/

- Slides will be uploaded on website (unswcpmsoc.com)

Attendance form

Something different...

Inequalities can be a little tricky, so the first few problems on the problem sheet are marked with what inequality you should consider using!

Square numbers are non-negative!

- The most important inequality in maths is that the square of all real numbers is always greater than or equal to 0 .
- We can express this as $x^{2} \geq 0$ where x is any real number.

■ This idea extends to mathematical expressions as well. For example, the expressions a^{4} and $(a+b)^{2}=a^{2}+2 a b+b^{2}$ are both greater than or equal to 0 for any $a, b \in \mathbb{R}$.
\square A number squared is $\mathbf{0}$ if and only if the number itself is $\mathbf{0}$.
■ Furthermore, $a^{2} \geq b^{2}$ if and only if $|a| \geq|b|$.
■ Problem: Prove that $a^{2}+b^{2} \geq 2 a b$ for all $a, b \in \mathbb{R}$.

Square numbers - Solution

■ Problem: Prove that $a^{2}+b^{2} \geq 2 a b$ for all $a, b \in \mathbb{R}$.
■ Working backwards, this is logically the same as proving that $a^{2}+b^{2}-2 a b \geq 0$.

- Because $(a-b)^{2}=a^{2}+b^{2}-2 a b$ and because $(a-b)^{2}$ is the square of a real number, we can conclude that $a^{2}+b^{2}-2 a b \geq 0$.

AM-GM inequality

■ One of the most famous (and widely used) inequality theorems is the Arithmetic Mean-Geometric Mean inequality.
■ It states that, for any set of two or more non-negative real numbers (denoted as $a_{1}, a_{2}, . . a_{n}$), that their arithmetic mean (average) is greater than their geometric mean.
■ This can be expressed as $\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}$.
■ Equality holds if and only if $a_{1}=a_{2}=\ldots=a_{n}$.

- Problem: Prove that the AM-GM inequality holds true for any two non-negative real numbers.

AM-GM inequality - Proof

■ Problem: Prove that the AM-GM inequality holds true for any two non-negative real numbers.
\square Let us denote these numbers as x and y. Our objective is to prove that $\frac{x+y}{2} \geq \sqrt{x y}$ holds true for any value of x and y. This is the same as proving that $\frac{x+y-2 \sqrt{x y}}{2} \geq 0$.
■ Notice that the numerator of the expression on the left hand side is equal to $(\sqrt{x}-\sqrt{y})^{2}$.
■ Since square numbers are non-negative, therefore $\frac{x+y-2 \sqrt{x y}}{2}=\frac{(\sqrt{x}-\sqrt{y})^{2}}{2} \geq 0$.

AM-GM inequality - Proof

■ Problem: Prove that the AM-GM inequality holds true for any two non-negative real numbers.
\square Let us denote these numbers as x and y. Our objective is to prove that $\frac{x+y}{2} \geq \sqrt{x y}$ holds true for any value of x and y. This is the same as proving that $\frac{x+y-2 \sqrt{x y}}{2} \geq 0$.
■ Notice that the numerator of the expression on the left hand side is equal to $(\sqrt{x}-\sqrt{y})^{2}$.
■ Since square numbers are non-negative, therefore $\frac{x+y-2 \sqrt{x y}}{2}=\frac{(\sqrt{x}-\sqrt{y})^{2}}{2} \geq 0$.

- There's multiple ways to prove the AM-GM inequality for more numbers, such as by using induction, logarithm approximations or other inequalities.

AM-GM - Splitting

■ You have to be creative with what you use as your set of numbers!
$■$ Problem: For non-negative numbers $x, y, z \in \mathbb{R}$ such that $x+y+z=1$, find the maximum value of $x y^{2} z^{3}$. Also find the values of x, y, z such that this maximum is achieved.

AM-GM - Solution

$■$ Problem: For non-negative numbers $x, y, z \in \mathbb{R}$ such that $x+y+z=1$, find the maximum value of $x y^{2} z^{3}$. Also find the values of x, y, z such that this maximum is achieved.
■ If we use AM-GM straight away, we will get the inequality $\sqrt[3]{x y z} \leq \frac{x+y+z}{3}=\frac{1}{3}$. Whilst this inequality isn't wrong, it's not what we are looking for.
■ Instead, rewrite $x+y+z=1$ as $x+\frac{y}{2}+\frac{y}{2}+\frac{z}{3}+\frac{z}{3}+\frac{z}{3}=1$. Now, by applying AM-GM, we get $\frac{1}{6}=\frac{x+\frac{y}{2}+\frac{y}{2}+\frac{z}{3}+\frac{z}{3}+\frac{z}{3}}{6} \geq \sqrt[6]{x \frac{y}{2} \frac{y}{2} \frac{z}{3} \frac{z}{3} \frac{z}{3}}=\sqrt[6]{\frac{x y^{2} z^{3}}{108}}$. Rearranging this, we get $x y^{2} z^{3} \leq \frac{1}{432}$.

- Equality holds if and only if all the terms are equal. So if we equate $x=\frac{y}{2}=\frac{z}{3}$, we'd find that the maximum is achieved when $x=\frac{1}{6}, y=\frac{1}{3}, z=\frac{1}{2}$.

Triangle substitution - What is it?

- Occasionally, you would find an inequality with three variables (let us call them a, b, c) and a condition which states that these three variables form the sides of a triangle.

Triangle substitution - What is it?

■ Occasionally, you would find an inequality with three variables (let us call them a, b, c) and a condition which states that these three variables form the sides of a triangle.
■ Every triangle has an incircle (a circle which is tangent to all three edges of the triangle). Notice that on this diagram, we can substitute $a=y+z, b=z+x, c=x+y$.

- To swap from x, y, z back to a, b, c, we use the substitutions $x=\frac{b+c-a}{2}, y=\frac{c+a-b}{2}, z=\frac{a+b-c}{2}$. An easy way to remember this is that a is opposite to x, b is opposite to y and c is opposite to z.

Triangle substitution - Problem

■ Problem: Let a, b, c be the sides of a triangle. Prove that $a b c \geq(b+c-a)(c+a-b)(a+b-c)$.

Triangle substitution - Problem

■ Problem: Let a, b, c be the sides of a triangle. Prove that $a b c \geq(b+c-a)(c+a-b)(a+b-c)$.
$■$ We use the triangle substitutions $a=y+z, b=z+x, c=z+x$. Expanding out the left hand side, we get

$$
\begin{aligned}
a b c=(x+y)(y+z)(z+x) & =\left(x^{2} y+y z^{2}\right)+\left(y^{2} z+z x^{2}\right)+\left(z^{2} x+x y^{2}\right)+2 x y z \\
& \geq 2 \sqrt{x^{2} y^{2} z^{2}}+2 \sqrt{x^{2} y^{2} z^{2}}+2 \sqrt{x^{2} y^{2} z^{2}}+2 x y z \\
& =8 x y z \\
& =8 \frac{b+c-a}{2} \frac{c+a-b}{2} \frac{a+b-c}{2} \\
& =(b+c-a)(c+a-b)(a+b-c) .
\end{aligned}
$$

Cauchy-Schwartz inequality

■ From high school, you may remember the dot product:

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
5 \\
3 \\
4
\end{array}\right)=1 \cdot 5+2 \cdot 3+3 \cdot 4
$$

■ If the vectors are \vec{u}, \vec{v}, then it turns out $\vec{u} \cdot \vec{v}=|\vec{v}||\vec{u}| \cos \theta$
■ Since $|\cos \theta| \leq 1, u \cdot v \leq|\vec{u}||\vec{v}|$

Cauchy-Schwartz inequality

■ From high school, you may remember the dot product:

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
5 \\
3 \\
4
\end{array}\right)=1 \cdot 5+2 \cdot 3+3 \cdot 4
$$

■ If the vectors are \vec{u}, \vec{v}, then it turns out $\vec{u} \cdot \vec{v}=|\vec{v}||\vec{u}| \cos \theta$
■ Since $|\cos \theta| \leq 1, u \cdot v \leq|\vec{u}||\vec{v}|$
■ This is the Cauchy-Schwartz inequality! Also written as

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

Cauchy-Schwartz inequality

■ From high school, you may remember the dot product:

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
5 \\
3 \\
4
\end{array}\right)=1 \cdot 5+2 \cdot 3+3 \cdot 4
$$

■ If the vectors are \vec{u}, \vec{v}, then it turns out $\vec{u} \cdot \vec{v}=|\vec{v}||\vec{u}| \cos \theta$
■ Since $|\cos \theta| \leq 1, u \cdot v \leq|\vec{u}||\vec{v}|$
■ This is the Cauchy-Schwartz inequality! Also written as

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

■ Tip: look for squares/force square terms to use Cauchy-Schwartz

Cauchy-Schwartz inequality - an example

Show that for all positive real numbers a, b, c such that $a b c=1$

$$
\frac{1}{c^{3}(a+b)}+\frac{1}{b^{3}(a+c)}+\frac{1}{a^{3}(b+c)} \geq \frac{3}{2}
$$

Cauchy-Schwartz inequality - an example 0 (T) cpmsoc

Show that for all positive real numbers a, b, c such that $a b c=1$

$$
\frac{1}{c^{3}(a+b)}+\frac{1}{b^{3}(a+c)}+\frac{1}{a^{3}(b+c)} \geq \frac{3}{2}
$$

Something tempting is to use Cauchy-Schwartz inequality backwards (since this looks like a dot product), however this will give us an \leq.

Cauchy-Schwartz inequality - an example

Show that for all positive real numbers a, b, c such that $a b c=1$

$$
\frac{1}{c^{3}(a+b)}+\frac{1}{b^{3}(a+c)}+\frac{1}{a^{3}(b+c)} \geq \frac{3}{2}
$$

Something tempting is to use Cauchy-Schwartz inequality backwards (since this looks like a dot product), however this will give us an \leq. Notice we can isolate square terms $\frac{1}{a^{2}}, \frac{1}{b^{2}}, \frac{1}{c^{2}}$, so maybe we consider

$$
\begin{aligned}
& \left(\frac{1}{c^{2} \sqrt{c(a+b)}^{2}}+\frac{1}{b^{2} \sqrt{b(a+c)}^{2}}+\frac{1}{a \sqrt{a(b+c)}^{2}}\right)\left(\sqrt{c(a+b)}^{2}+{\sqrt{b(a+c)^{2}}}^{2}+\sqrt{a(b+c)}^{2}\right) \\
& \geq\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{2}
\end{aligned}
$$

Then we divide the right term of the LHS on both sides to obtain

$$
\frac{1}{c^{3}(a+b)}+\frac{1}{b^{3}(a+c)}+\frac{1}{a^{3}(b+c)} \geq \frac{\frac{(a b+b c+c a)^{2}}{(a b c)^{2}}}{2(a b+b c+c a)}=\frac{a b+b c+c a}{2} \geq \frac{3 \sqrt[3]{(a b c)^{2}}}{2}=\frac{3}{2}
$$

Jensen's inequality

■ Say we have a function f, and some values x_{1}, x_{2}, \ldots
$■$ Which is bigger, f (the average of x_{1}, x_{2}, \ldots), or the average of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$?

Jensen's inequality

- Say we have a function f, and some values x_{1}, x_{2}, \ldots.
$■$ Which is bigger, f (the average of x_{1}, x_{2}, \ldots), or the average of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$?
■ This depends. What if f is convex? (convex means "cupped upwards")

Jensen's inequality

■ Say we have a function f, and some values x_{1}, x_{2}, \ldots.
\square Which is bigger, f (the average of x_{1}, x_{2}, \ldots), or the average of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$?
$■$ This depends. What if f is convex? (convex means "cupped upwards")
■ Jensen's inequality says evaluating then averaging gives a bigger number!
■ We write $\mathbb{E}(h(X)) \geq h(\mathbb{E}(X))$ (this means weighted averages also work!)

- For a concave function, $\mathbb{E}(h(X)) \leq h(\mathbb{E}(X))$

Jensen's Inequality Example

- Let's prove the power mean inequality

■ For positive integers n, k and a set of positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$, show that

$$
\left(\frac{x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}}{n}\right)^{\frac{1}{k}} \leq\left(\frac{x_{1}^{k+1}+x_{2}^{k+1}+\cdots+x_{n}^{k+1}}{n}\right)^{\frac{1}{k+1}}
$$

■ Note it looks like we have averages on both sides... what convex (or concave) function could we consider?

Jensen's Inequality Example

- Let's prove the power mean inequality

■ For positive integers n, k and a set of positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$, show that

$$
\left(\frac{x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}}{n}\right)^{\frac{1}{k}} \leq\left(\frac{x_{1}^{k+1}+x_{2}^{k+1}+\cdots+x_{n}^{k+1}}{n}\right)^{\frac{1}{k+1}}
$$

■ Note it looks like we have averages on both sides... what convex (or concave) function could we consider?
■ Since we want something with a $k+1$ and a k, let's try $h(x)=x^{\frac{k+1}{k}}$, and apply it on $x_{1}^{k}, x_{2}^{k}, \ldots$:

$$
\left(\frac{x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}}{n}\right)^{\frac{k+1}{k}} \leq\left(\frac{x_{1}^{k \cdot \frac{k+1}{k}}+x_{2}^{k \cdot \frac{k+1}{k}}+\cdots+x_{n}^{k \cdot \frac{k+1}{k}}}{n}\right)
$$

Rearrangement inequality

\square Given increasing sequences of any real numbers $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots b_{n}$, $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \geq a_{1} b_{\sigma(1)}+a_{2} b_{\sigma(2)}+\cdots+a_{n} b_{\sigma(n)} \geq a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}$, where σ is some permutation function which rearranges the numbers 1 to n.

Rearrangement inequality

\square Given increasing sequences of any real numbers $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots b_{n}$, $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \geq a_{1} b_{\sigma(1)}+a_{2} b_{\sigma(2)}+\cdots+a_{n} b_{\sigma(n)} \geq a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}$, where σ is some permutation function which rearranges the numbers 1 to n.

- Roughly, this means the maximum dot product we can achieve between two vectors is if every k th highest number from one vector is paired with the $k t h$ highest number from the other vector.

Rearrangement inequality

\square Given increasing sequences of any real numbers $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots b_{n}$, $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \geq a_{1} b_{\sigma(1)}+a_{2} b_{\sigma(2)}+\cdots+a_{n} b_{\sigma(n)} \geq a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}$, where σ is some permutation function which rearranges the numbers 1 to n.
■ Roughly, this means the maximum dot product we can achieve between two vectors is if every k th highest number from one vector is paired with the $k t h$ highest number from the other vector.
\square Similarly, the minimum dot product is achived when the $k t h$ highest from one is paired with the k th lowest from the other.

Rearrangement inequality - example

Prove for positive real numbers a, b, c,

$$
\frac{a}{b c}+\frac{b}{c a}+\frac{c}{a b} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

Rearrangement inequality - example

Prove for positive real numbers a, b, c,

$$
\frac{a}{b c}+\frac{b}{c a}+\frac{c}{a b} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

WLOG assume $a \geq b \geq c$. Then $a b \geq c a \geq b c$ and $\frac{1}{a b} \leq \frac{1}{c a} \leq \frac{1}{b c}$. This means the "maximal pairing" is a, b, c with $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ (respectively), which is the LHS.

Rearrangement inequality - example

Prove for positive real numbers a, b, c,

$$
\frac{a}{b c}+\frac{b}{c a}+\frac{c}{a b} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

WLOG assume $a \geq b \geq c$. Then $a b \geq c a \geq b c$ and $\frac{1}{a b} \leq \frac{1}{c a} \leq \frac{1}{b c}$. This means the "maximal pairing" is a, b, c with $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$ (respectively), which is the LHS. Thus we may rearrange however we want to get

$$
\frac{a}{a b}+\frac{b}{b c}+\frac{c}{c a}=\frac{1}{b}+\frac{1}{c}+\frac{1}{a}
$$

Fun(ny) exercise

ATC ALCBS

Try proving Cauchy with Jensen and Rearrangement (separately)!

An interesting observation...

A lot of the inequalities we've seen so far have a peculiar property: the multinomial terms on both sides all seem to have the same "degree"

An interesting observation...

A lot of the inequalities we've seen so far have a peculiar property: the multinomial terms on both sides all seem to have the same "degree"

Homogenisation

■ Well, I define "degree" of "multinomial terms" here very weirdly
■ Replace every variable with "x", separate the added terms and check the values of the exponents
■ All terms seem to have the same degrees -> AM-GM, Cauchy-Schwartz, Rearrangement, and standard operations of multiplying and adding seem to retain "degree"
■ Inequalities with different degree terms tend to have constraints imposed (e.g. $a b c=1$)

- You can force inequalities to have the same degree on both sides by using the constraint \rightarrow this process is called "homogenisation"

Homogenisation - an example

Show that for positive real numbers a, b, c where $a b c=1$

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq a+b+c
$$

Homogenisation - an example

Show that for positive real numbers a, b, c where $a b c=1$

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq a+b+c
$$

To homogenise, we divide by $\sqrt[3]{a b c}$ on the RHS (get creative when trying to homogenise!)

Homogenisation - an example

Show that for positive real numbers a, b, c where $a b c=1$

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq a+b+c
$$

To homogenise, we divide by $\sqrt[3]{a b c}$ on the RHS (get creative when trying to homogenise!) The cube root indicates the use of AM-GM with three variables.

Homogenisation - an example

Show that for positive real numbers a, b, c where $a b c=1$

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq a+b+c
$$

To homogenise, we divide by $\sqrt[3]{a b c}$ on the RHS (get creative when trying to homogenise!) The cube root indicates the use of AM-GM with three variables. Is there a cyclic inequality that gives us $\frac{a}{\sqrt[3]{a b c}}$?

$$
\frac{a}{b}+\frac{a}{b}+\frac{b}{c} \geq 3 \sqrt[3]{\frac{a^{2}}{b c}}=\frac{3 a}{\sqrt[3]{a b c}}
$$

Now just add the cyclic inequalities up.

Attendance form :D

ATC CLUBS

Further events

Please join us for:

- Maths workshop in two weeks
- Social session on Friday

■ Programming workshop next week

