Series and Analytic Number Theory

Sarthak Sahoo
April 11, 2022

1 Pre-requisites
o MATH1141,MATHI1241 (Calculus section).
e MATH1081/Number theory workshops of CPMSoc :) .

1.1 Notation
e N={1,2,---}

e N*={0,1,2,--- }

2 Series

With the exception of the
geometric series, there does not
exist in all of mathematics a
single infinite series whose sum
has been determined rigorously.

— Niels Henrik Abel

2.1 Definition of a Series
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Consider a sequence of terms {a"}n:p then a finite series is defined as
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We can extend the definition above for an infinite sequence {an}

infinite series as follows:
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A series is said to converge to L € R <= Ve > 0,3dK > 0 such that

k
Zan — L
n=1

Which in the limiting form basically states that

<eVEk> K.

A series is either convergent or divergent.

We now present a very important theorem, before which we note the following
definition,

Definition (Uniform Convergence): A sequence of function f,(z) : X —
Y is said to be uniform convergent to f(z) iff for every e > 0,3N € N such
that Vn > N,z € X

[ fu(z) = f(2)]| <e.

Theorem 2.1 (Interchange of Limit and Integral) Let f,,(z) € C([a,b]) and
converge uniformly on [a,b]. Then
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lim fn(x)dwz/ li_)m fu(x)da
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Proof. Let f be the limit of f,,. Note that f is continuous.
Write I,, = fab fn(z)dz and I = f; f(x)dz. Given e > 0, we select k such that

If = fall < ﬁ v €lab,n >k

Then .
€
I—1,] < - e — = _
| n|_/a|f fnldz < (b a)(bia) e, n>k

Hence I,, — I.

Corollary: if instead of f,, had we considered f; + --- 4+ f,, then we would
have obtained: if f,, € C([a,b]) and uniform convergent on [a,b] then,

s b b oo
nz_:l/a fn(a:)dm:/a nz::lfn(x)dx.

Note: The above gives insight into why in generality we can’t exchange sum-
mation and integrals or limits and integrals. O



2.2 Telescoping Series

Telescoping is one of the celebrated ways of evaluating a series at hand, and
is often a technique that is used in solving problems pertaining to Series. Lets
take a look at one of the most basic problem that uses the principle.
Problem: Prove

= 1
> iy~
n:ln(n+ )

Proof. The above sum is equivalent to the following,
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Quite evidently the principle used in the above argument was as follows; If

(WLOG)
k k
Z:: Z n+1

n=1

then we have

k
Z(bn —bny1) = (br = p8) + (B8 = p8) + - - + (D — brgr) = b1 — biyr.

Note: A road block that one runs against immediately is the fact that recog-
nizing b,, is not mechanical(or algorithmic), much like how recognition of g(z)
such that ¢’(z) = f(x) for [ f(x)dz. This is where it becomes an end unto
itself, rather than being a means to an end.

2.3 Problems
1. Evaluate the following:

2. Evaluate
()
—\ nl (n—2)!
n—1
where S,, = Z k(n—k), n>4.
k=1



3. Evaluate

oo ) 2
S (127
n=1
4. Evaluate
DT E
—(n+1)yn+nyn+1

5. (Putnam A3 2014) Let ag = 5/2 and ay, = a}_, — 2 for k > 1. Compute

(-3

3 Arithmetic Series

3.1 Arithmetic Functions

An arithmetic functions f are defined to be f : N — C. These can be either
used to count the primes or count units of a natural number n (p(n)), or ex-
press some arithmetical properties of n.

Additive functions: An arithmetic function f is additive if f(m + n) =
f(m) + f(n),Vged(m,n) = 1.

Multiplicative functions: An arithmetic function f is multiplicative if f(mn) =
f(m)f(n),vged(m,n) = 1.

An example of a multiplicative function that we have encountered is p(n). We
introduce some other familiar arithmetic functions. Note that n =[]}, p}".

4 )
Theorem 3.1 Let o : N — C such that
ot =S a=T[ (51,
. p
d|n i=1
gives the sum of the divisors for n.
\- J




Theorem 3.2 The number of divisors of n is given by 7 : N — C,

m

7(n) = Z 1= H(ai +1).
d|n

i=1

Corollary: For any positive integer n,

H d=n"M/2,
d|

Definition (Mobius function): The mobius function p: N = { —1,0,1} is
defined as,

1 ifn=1
u(n) =<0 p?|n for some p > 1
(=1)* n =p;---pp where p, € P

(Theorem 3.3 The mobius function p is multiplicative. )

Proof. Let m,n € Ns.t. gcd(m,n) = 1. If n = 1 then p is clearly multiplica-
tive. If p?|m then p?|mn implying that u(m) = p(mn) = 0 = p(m)u(n).
Consider the last case m = py -+ pr, n = q1 -+~ qp, then u(mn) = (—=1)Fh =
p(m)p(n). O

3.2 Arithmetic Series
In number theory we are interested in evaluating series such as
F(s)=_f(s), and F(d) =} f(d),
seS d|n

where f is an arithmetic function and S is at most countably infinite set. We
consider one of the basic series related to the totient function, namely the
evaluation of the following.

Theorem 3.4 (Gauss) If ¢ is the Euler’s totient function then,

Zgo(d):n, n > 1.

d|n




Proof. Consider

(1) + @) + -+ oP1)) - (p(1) + -+ @(pi)) = dit- - +drmy = Y 0(d),

d|n
due p(mn) = p(m)p(n), ged(m,n) = 1. Subsequently, we see that
(1) + (1) + -+ o(p]") = pi*,
through telescoping and hence the result follows. O

Lets formalize the ideas behind the summation of a multiplicative function.

Def (Summation function): For an Arithmetic function, the summation
function is defined as follows:

F(n) = f(d).

d|n

(Theorem 3.5 If f is multiplicative then so is F. )

Proof. Consider
F(mn) =Y f(d)

d|lmn

, where ged(m, n) = 1. Note that there must be integers k, h such that d = kh
and k|m and h|n, with ged(k, h) = 1. Therefore f(kh) = f(k)f(h). Hence

F(mn)= Y f(d)= > fk)f(h)=>_fk)>_ f(h)=F(m)F(n).

dlmn k|m,h|n klm h|n

Theorem 3.6 (Mobius inversion) Let f be an arithmetic function and let F

be its summation function. Then

) =Y u@F (%)
dn

Proof. Left to the readers as an exercise. Hint: Consider the right hand side
of the equality and try to use what you know to reduce it down to f(n). O

The above theorem serves to recover f, when we have been given the summa-
tion function and wish to find out the arithmetic function. Therefore aptly
named ’Inversion Formula’.



3.3 Problems

1. Prove that for any integer n > 1,

2

d|n d|n

2. Let p be the Mdbius function. For n > 1, evaluate

= n
B[]

z::u( )3

k=1

3. Let n be a positive integer. Prove that

St ] =15

E>1

4 Elucidation On Formal Power Series

A generating function is a device
somewhat similar to a bag.
Instead of carrying many little
objects detachedly, which could
be embarrassing, we put them all
in a bag, and then we have only
one object to carry, the bag.

— George Polya

A formal power series is what a generating function is formally known as. A
generating function is basically used to encode the terms of a sequence onto a
power series. For instance the generating function for {Fn}n>0, where F), is

Z F,x". (1)
n=0

However we would also like a closed form for our generating functions to make
things more compact and readily applicable to problems. The closed for the
above is

the Fibonacci sequence, is

- 1
n _
Z Fna® = 1—a—2?
n=0
Proof. The Fibonacci sequence follows the recursion relation,

Fn+2:Fn+1+Fna FO:F1:1



Let g(z) := Y.~ o Foa™, then we have

e} e} e}
Z Fn+2l‘n = Z Fn+1$n + Z ann
n=0 n=0 n=0

1 & I .
= ERXZ;FHQS :;;an + g(x)
— ga) = —
z) = ———.
g 1—2—2a2

Note: We have already encountered generating function before (CPMSoc
Workshop on Combinatorics)

In general, if f is a function such that
f(x) = apug(x) + aquy (z) + agua(x) + - - + apup(z) + - -,

where a; € R, we say that f if the generating function of the sequence of real
numbers
{G/O;alaaQa"' aana"'}

with respect to the sequence of functions

{U07U1,U2,"' 7un7"'}'

We shall now present a list of common generating functions,
(%)
E+1°
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k+1 2x

1. The Catalan numbers are given by Cj =

£>0
2. The generating function for a particular Binomial coefficient
Z <2k> ok 1
k>0 k CVI-dr
3. The Generalized Binomial Theorem

i (Z)ﬂfk ={1+a2)", (Z) — ”(”—1)'~]-€!(n—k+1)’

k=0

where n € R



4.1 Problems

1. Prove that
2z

> 1—y/1—4
> Gt = 1=
k=0

2. Prove that
Z (2k> ok 1
= k V1 —4zx

3. Find the number of ways of distributing 15 apples to 5 students.
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