
Q1

From inspection of the question, it can be theorised that An must eventually be
equal and stay equal to its limiting value, kind of like how a sequence of integers
that converges to a number must eventually become that number.

We can prove this formally with the definition of convergence: define the lim-
iting matrix to be A∞, and fi,j(n) = An

i,j (i, j entry of An). Then, pick

ϵ = 1
2 |A

∞
i,j−round(A∞

i,j)|, where round(x) returns the closest integer to x. Then,
if ϵ > 0, this means from the epsilon-delta definition of convergence, there exists
N where for n > N , |An

i,j − A∞
i,j | < ϵ. However, note that the smallest value of

the LHS is exactly 2ϵ, since this is the distance to the closest integer, thus we
have 2ϵ < ϵ, which is a contradiction.

This means ϵ = 0, and A∞ is an integer matrix. Furthermore, we can generate a
set of Ni,j where, after picking ϵ = 1

2 , we deduce n > Ni,j =⇒ |An
i,j−A∞

i,j | < 1
2 .

However, as established before, An
i,j and A∞

i,j are integers; if they were different,
the difference betweeen them would be at least 1. So, instead they must be equal
for all n > Ni,j . If we take N = max{Ni,j : 1 ≤ i, j ≤ m}, then we note for all
n > N , An = A∞ (since all entries are equal). This condition is exactly equiva-
lent to AN = AN+1, which we can see by multiplying both sides by A repeatedly.

Now, we want to show that Am = Am+1. This can be done nicely if you under-
stand Jordan forms theory, but we can do this using just MATH1141/MATH1241
knowledge. Rearranging our equation (replacing N with n), we obtain An+1 −
An = O = An(A − I). From here, we can see that kerAk ≤ Ak+1, but a more
interesting result is that if kerAk = kerAk+1, kerAk = kerAt for all t ≥ k.

We do this by letting a vector v⃗ be in the kernel of Ak+2. Then, Ak+2v⃗ =
Ak+1(Av⃗) = 0⃗, so v⃗ ∈ ker(Ak+1), and thus also ker(Ak). So, Ak+1v⃗ = Ak(Av⃗) =
0⃗, so v ∈ ker(Ak). Repeating this process for t ≥ k gives the desired result.
This means that the kernel must always be strictly increasing in size until it
stops growing entirely. Since the maximum dimension of any subspace of an
m-dimensional vector space is m, Am will always have the largest kernel out of
all powers of A. Thus, ker(An) ≤ ker(Am), and since from the original equation
we deduce An sends all vectors (A− I)v⃗ to 0⃗ (as An(A− I) is the zero matrix),
so must Am, from which it follows Am(A− I) = O, so Am = Am+1, and we are
done.

Q2

From a tree, adding an edge to a leaf node will keep the number of leaf nodes
the same (the leaf node becomes a non-leaf node and we have a new leaf node,
−1+ 1), and adding an edge to a non-leaf node will increase the number of leaf
nodes by exactly 1 (no leaf nodes removed, +1). This is true except for the case
with one vertex, so we ignore this. If we let the expected number of leaf nodes
after n steps be f(n), using linearity of expectations and the fact that choosing

a non-leaf node has probability n−f(n)
n , we obtain f(2) = 2, and

f(n+ 1) = f(n) +
n− f(n)

n
=

n− 1

n
f(n) + 1.

From here, the most common approach to solving the question was to construct
a recurrence relation and find its limiting value, but we can make our life easier
by constructing a nice inequality (which can be observed by noticing f(n) grows
approximately by 1

2 every time):

n

2
≤ f(n) ≤ n+ 1

2
.

This can be proved inductively. Skipping the base case and assuming the in-
duction hypothesis for n = k, we find

f(k + 1) =
k − 1

k
f(k) + 1 ≥ k − 1

k

k

2
+ 1 =

k + 1

2
,

and

f(k + 1) =
k − 1

k
f(k) + 1 ≤ k − 1

k

k + 1

2
+ 1 =

k2 − 1

2k
+ 1 ≤ k2

2k
+ 1 =

k + 2

2
.

Now, dividing our inequality through by n, we obtain 1
2 ≤ f(n)

n ≤ 1
2 +

1
2n , so by

the pinching theorem, f(n)
n → 1

2 as n → ∞.

Q3

We will prove the contrapositive: let S be a set of numbers greater than 1
where gcd(s, t), for any s, t ∈ S, is not prime. We wish to construct n where
gcd(n, s) ̸∈ {1, s} for all s ∈ S.

Firstly, note that no number s ∈ S can be prime as that would imply gcd(s, s) =
s is prime. Now, for every non-coprime distinct pair of s, t ∈ S, we take some
p| gcd(s, t) and multiply them together, ignoring duplicates of prime factors. To
this, we also multiply a single prime factor p|t for all t that is coprime to every
other element of S (that is, we are now taking prime factors from numbers that
weren’t covered in the previous step). Now, we have gcd(n, s) ̸= 1 for all s ∈ S.

Note that every number s ∈ S coprime to all t ∈ S where t ̸= s must be such
that gcd(s, n) is prime, as that’s how we chose n, meaning gcd(s, n) ̸= s as s is
not prime. We will now try to ”correct” our value of n to achieve gcd(n, s) ̸= s
for all s ∈ S.

If gcd(s, n) = s, then pick some prime p|s. For all t ∈ S which is divisible
by p, since p| gcd(t, s) and we cannot have gcd(t, s) be equal to p (a prime),
there must exist some other q| gcd(t, s) (note that if this was not the case, then
there must exist another factor of p i.e. that p2| gcd(t, s). This means p2|s,
however only a single factor of p was used in the multiplication of n: specifi-
cally, n is not divisible by p2, so gcd(n, s) ̸= s, which is a contradiction). q must
divide n as we’ve established q|s = gcd(s, n), so if we reassign n to be n

p , we

maintain that q| gcd(n, t), so gcd(n, t) ̸= 1 and gcd(n, s) ̸= 1. This relabelling
is the same for all t, and reassigning in this way has given us gcd(n, s) ̸= s.
Filtering out a single prime in this way for all other such s gives us an n where
gcd(n, s) ̸∈ {1, s} for all s ∈ S.

Q4

We direct you to ”Narrowing the Bounds” in this wonderful article :).

https://www.cs.ubc.ca/~wolf/teaching/card-trick-notes.html

Q5

For part a), we essentially want to pack as many points as possible with the
Manhattan distance between any two no less than 2d on an n× n lattice whose
sides wrap around. We can model this by having a ”zone” around each point,
which is the set of points at most d manhattan distance away from it. Now,
points are packed with distance no less than 2d if and only if zones overlap by
no more than their diagonal. Note that every zone has the same, fixed number
of points.

This is actually equivalent to packing a bunch of d-radius diamonds in a square
overlapping on both sides, with corners centered at integer coordinates! This
is because the overlapping of diagonals corresponds exactly to the sides of di-
amonds touching. So, if the total area of a packing of diamonds is the square
itself, it must be optimal. Consider, then, the points: {(2di, 2dj) : i, j ∈
Z} ∪ {(2di + d, 2dj + d) : i, j ∈ Z}. Taking the subset of these points that

lie in A gives us 2 · n2

4d2 = n2

2d2 points (calculate by taking two separate ”square”

lattices each with n2

4d2 points) in A, and since the area of each diamond is 2d2,
the total area is n2, which is the entire square and thus proves optimality.

For part b), the modular bounds of the square make packing annoying and
sometimes non-intuitive. Even the problem of packing equivalent, axis-aligned
squares is annoying: consider doing this, for example, with 2 × 2 squares in a
5 × 5 larger square. Though it may seem optimal to pack 4 all fitted to the
top-left corner, here’s a packing with 4 squares where a 5th can be placed by
piecing together 4 1× 1 squares in each of the corners:

One way to see this optimal is to imagine moving a vertical line through the
square: each square is either completely outside the line or completely covers
s of the line (s being every small square’s side length), and there must thus
be at least n mod s of the line not covered by any squares: ”integrating” this
over the entire square gives a minimum total area of n(n mod s). This can
also be obtained from a horizontal line, and if we look at our configuration, no
two ”negative-space-squares” overlap, thus creating the maximum amount of
overlap with the missing horizontal area and missing vertical area (attaining a
missing area of 5(5 mod 2)). And that’s a good place to stop.

