
O-Week contest debrief

CPMSoc

CPMSOCTable of contents
1 Introduction

Welcome
2 Mathematics Solutions

Quick Sum
Drawing Aces
Find a Function
Triangular Edges
Horrendously Complex
Manhattan’s Quadrilateral

3 Programming Solutions
Addition
Binary Help
Counting Rectangles
Burger
Gerrymandering
Shapes
Isaiah’s Unsolved

4 Thanks for coming!
Food acquisition

CPMSoc O-Week contest debrief 20/2/23 1 / 27

CPMSOCWelcome
Join our subcom!
Mathematics workshops will (probably) run every odd-numbered week (1, 3, 5, ...)
Programming ones are every other week
Slides will be uploaded on website (unswcpmsoc.com)
Competitive maths ain’t so competitive!

CPMSoc O-Week contest debrief 20/2/23 2 / 27

CPMSOCQuick Sum
Quick! Sum!
If you didn’t add all the numbers within the first second of the contest starting you
missed out on winning a free lamborghini. L
2023(2023+1)

2

CPMSoc O-Week contest debrief 20/2/23 3 / 27

CPMSOCDrawing Aces
If 4 of the cards have hearts suits, then one of the aces must be a hearts card
Probability that one ace is a heart is 1

2

Probability three more hearts are selected is 12
48 × 11

47 × 10
45 (exclude all aces since

we’ve already selected one as a heart)
Thus total probability is 1

2 × 12
48 × 11

47 × 10
46 = 55

8648

CPMSoc O-Week contest debrief 20/2/23 4 / 27

CPMSOCFind a Function
Substitute x = 1: f(y) = f(1)y

Let f(1) = A for any real constant A.
Substituting back: x ·A · y − y ·A · x = 0, which always holds.
So f(x) = Ax for any real constant A covers all solutions.

CPMSoc O-Week contest debrief 20/2/23 5 / 27

CPMSOCTriangular Edges
Let the number of triangles a vertex touches be its "degree".
Call the number of vertexes with degree i ni, where i ∈ {1, 2, 3, 4, 5, 6}
The total degree counts each triangle 3 times, so if there are n triangles, we have∑6

i=1 ini = 3n. Taking modulo 3, we have the sum
n1 + 2n2 + n4 + 2n5 = (n1 + n4) + 2(n2 + n5) = 2x+ y = 0 mod 3

So 2x+ y is divisible by 3.

CPMSoc O-Week contest debrief 20/2/23 6 / 27

CPMSOCHorrendously Complex

3x2 + 12x+ 11

(x+ 1)(x+ 2)(x+ 3)
=

d
dx ((x+ 1)(x+ 2)(x+ 3))

(x+ 1)(x+ 2)(x+ 3)
=

1

x+ 1
+

1

x+ 2
+

1

x+ 3
.

So,
7∑

i=1

3ω2
i + 12ωi + 11

(ωi + 1)(ωi + 2)(ωi + 3)

=

7∑
i=1

(
1

ωi + 1
+

1

ωi + 2
+

1

ωi + 3

)

=

7∑
i=1

1

ωi + 1
+

7∑
i=1

1

ωi + 2
+

7∑
i=1

1

ωi + 3

=
7× 16

17 + 1
+

7× 26

27 + 1
+

7× 36

37 + 1
=

2626393

282252

CPMSoc O-Week contest debrief 20/2/23 7 / 27

CPMSOCManhattan’s Quadrilateral

Sample two points from the red edge and two from the blue
Shape is concave, so perimeter is
2× width + 2× height = 2× (max blue − min red) + 2× (max all − min all)
Calculating expected values is linear, so just take average of each of these values
Average maximum of n points is n

n+1 (find CDF, get PDF, calculate
∫ 1
0 xP (x)dx)

So answer is 2× (53 − 1
3) + 2× (45 − 1

5) =
58
15

CPMSoc O-Week contest debrief 20/2/23 8 / 27

CPMSOCAddition
This one was also a Lamborghini if you solved it in the first second of the contest.

CPMSoc O-Week contest debrief 20/2/23 9 / 27

CPMSOCBinary Help
Just check every ascending power of 2 until you find one that is larger than N

This is only O(logN), since N was only up to 1018 ≈ 260

Also could use binary, check the most significant bit -> then just set next bit to 1 and
all other bits to 0
2⌈log2 (N+1)⌉

CPMSoc O-Week contest debrief 20/2/23 10 / 27

CPMSOCCounting Rectangles
Brute force - count every possible top, left, bottom, right edge of rectangle (O(W 2H2))

CPMSoc O-Week contest debrief 20/2/23 11 / 27

CPMSOCCounting Rectangles
Pick any possible left and right edge (W (W+1)

2), then any possible top and bottom
edge (H(H+1)

2)

All combinations of these = W (W+1)H(H+1)
4

CPMSoc O-Week contest debrief 20/2/23 12 / 27

CPMSOCBurger
Can be solved either mathematically or programmatically
Both solutions require some maths

CPMSoc O-Week contest debrief 20/2/23 13 / 27

CPMSOCBurger

CPMSoc O-Week contest debrief 20/2/23 14 / 27

CPMSOCBurger

CPMSoc O-Week contest debrief 20/2/23 14 / 27

CPMSOCBurger

CPMSoc O-Week contest debrief 20/2/23 14 / 27

CPMSOCBurger

CPMSoc O-Week contest debrief 20/2/23 14 / 27

CPMSOCBurger

(2r)2 ≤ (H − 2r)2 + (W − 2r)2

CPMSoc O-Week contest debrief 20/2/23 14 / 27

CPMSOCBurger

d2 ≤ (H − d)2 + (W − d)2

CPMSoc O-Week contest debrief 20/2/23 14 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2

√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W) + d2

0 ≤ (H +W)2 − 2HW − 2d(H +W) + d2

0 ≤ (H +W)2 − 2d(H +W) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW

CPMSoc O-Week contest debrief 20/2/23 15 / 27

CPMSOCBurger Programming Solution

(H − d)2 + (W − d)2 ≥ d2

CPMSoc O-Week contest debrief 20/2/23 16 / 27

CPMSOCBurger Programming Solution

(H − d)2 + (W − d)2 ≥ d2

Binary Search!

CPMSoc O-Week contest debrief 20/2/23 16 / 27

CPMSOCBurger Programming Solution
def c a n _ f i t (d , W, H) :

i f d > W or d > H:
return False

e l i f d**2 > (W−d) * * 2 + (H−d) * * 2 :
return False

else :
return True

l , r = 1 , max(W, H) + 1
while r − l > 1 :

m = (l + r) / / 2
i f c a n _ f i t (m, W, H) : l = m
else : r = m

pr in t (l)

CPMSoc O-Week contest debrief 20/2/23 17 / 27

CPMSOCGerrymandering
A modified version of maximum subarray sum, also called largest sum contiguous
subarray
Observation: when checking A, use a subarray sum by setting all voters for A to be 1
and all voters for B to be −1

Two pointer technique or Kadane’s algorithm to find largest sum for A and B

CPMSoc O-Week contest debrief 20/2/23 18 / 27

CPMSOCGerrymandering
def best_margin (array , cand) :

best , curr_sum = 0 , 0
for vote in ar ray :

i f vote == cand :
curr_sum += 1

else :
curr_sum −= 1

best = max(best , curr_sum)
curr_sum = max(curr_sum , 0)

return best

a = best_margin (array , ’A ’)
b = best_margin (array , ’B ’)
i f a > b : pr in t (’A ’)
e l i f a < b : pr in t (’B ’)
else : pr in t (’BOTH ’)
pr in t (max(a , b))

CPMSoc O-Week contest debrief 20/2/23 19 / 27

CPMSOCShapes
The key to this question is making observations.
First here are the rules:

The shape must be convex. This means that everything between two filled squares
are also filled. (1)
The shape is vertically and horizontally symmetric (2)
The shape must be exactly a height of H and a width of W. (3)

CPMSoc O-Week contest debrief 20/2/23 20 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes

CPMSoc O-Week contest debrief 20/2/23 21 / 27

CPMSOCShapes
a _ r i g h t [0] [0] = 1

for i in range (R+1) :
for j in range (C+1) :

i f j > 0 :
a _ r i g h t [i] [j] = (a _ r i g h t [i] [j −1] + a_down [i] [j −1]) % mod
b _ r i g h t [i] [j] = (b_down [i] [j −1]) % mod

i f i > 0 :
a_down [i] [j] = (a _ r i g h t [i − 1] [j]) % mod
b_down [i] [j] = (a_down [i − 1] [j] + b _ r i g h t [i − 1] [j] + b_down [i − 1] [j]) % mod

def solve (r , c) :
return (a _ r i g h t [r] [c] + a_down [r] [c] + b _ r i g h t [r] [c] + b_down [r] [c]) % mod

pr in t (so lve (R, C))

CPMSoc O-Week contest debrief 20/2/23 22 / 27

CPMSOCIsaiah’s Unsolved
For simplicity, number the nodes of the DAG according to their toplogical ordering so that
the adjacency matrix is an upper triangular matrix. Let A be the adjacency matrix of the
DAG, e be a column vector of n 1’s and eT be its transpose. Then, the sum of matrix
entries is eT ∗A ∗ e. Note that A is nilpotent iff graph is acyclic, so let k be an integer such
that At = 0.
Then e(G)− o(G) = −eT ∗A0 ∗ e+ eT ∗A1 ∗ e− ...+ (−1)t ∗ eT ∗A(t− 1) ∗ e. Since matrix
multiplication is distributive, this equals: eT ∗ (−A0 +A−A2 + ...+ (−1)t ∗A(t− 1)) ∗ e.
The middle part is a geometric series with matrices, which we can derive a formula for as
long as A+ I is invertible. Note that, because our construction, A+ I is also upper
triangular, and has 1’s along its diagonals, so it’s invertible (though this applies generally
for any A+ I where A is nilpotent). Thus, e(G)− o(G) = eT ∗ (−(A+ I)−1) ∗ e.
For simplicity, let’s try and maximise/minimise the sum of entries of (A+ I)−1 (so now we
are maximising/minimising o(G)− e(G)).
We can find the inverse matrix by performing row operations to transform

CPMSoc O-Week contest debrief 20/2/23 23 / 27

CPMSOCIsaiah’s Unsolved
(A+ I | I) into (I | (A + I)−1).Realisethat, becauseA+
Iisaninvertibleuppertriangularmatrixof0′sand1′sonly, wecandescribethisbythefollowingalgorithm :
foreachrow, startingfromthebottomandgoingtothetop, checkallcolumnscontaininga1excludingthediagonalentry(saythesearecolumnsc1, c2, ..., ck)andsubtracttherowswithnumbersequaltothosecolumnnumbersfromthiscurrentrow(soperformrowr−
rowc1, rowr − rowc2, ..., rowr − rowck).
Since all we care about is the sum of matrix entries, we can reduce this to only thinking
about the sums of values on each row:
Starting with an array V of n 1’s ([1, 1, ..., 1]), from i = 1 to n (1-indexing), we may choose
to perform V[i] -= V[j] for unique values of j, where 1 <= j < i.
If we subtract by a net positive value, we might as well subtract the maximum possible
amount we can for the sake of adding more value to our maximisation/minimisation later
on, which will be the sum of all positive values, and similarly with a net negative value,
which will be the sum of all negative values.
Therefore, we can reduce this problem further to considering two variables x, y (which
start of as 0), where x is the sum of positive terms and y is the sum of negative terms, and
in each of n turns, we can choose to add y + 1 to x or x - 1 to y. for n <= 4, programming
this, the (min, max) seem to be (for o(G) - e(G), not e(G) - o(G)) (1, 1), (1, 2), (1

CPMSoc O-Week contest debrief 20/2/23 24 / 27

CPMSOCIsaiah’s unsolved
, 3), (0, 4) and I’m guessing the proof for the last step (where you show the
maximum/minimum value of the x, y recurrence relation) involves saying that, after a
certain point, the best way to "grow" x and y is by alternating which one you add to
(maybe up until a number of steps?), since, excluding the constant factors of adding 1 and
-1, this is just the fibonacci sequence, and when x - y is calculated, you get something
along those lines? idk anyway plugging in n ≥ 5 into oeis shows the values are (probably):

(−Fn−1 + 2, Fn−1 + 2),

where Fn is the nth Fibonacci number (where the first 5 are 1, 1, 2, 3, 5)

CPMSoc O-Week contest debrief 20/2/23 25 / 27

CPMSOCAttendance form :D

CPMSoc O-Week contest debrief 20/2/23 26 / 27

CPMSOCFurther events
Please join us for:

Social session tomorrow
Programming workshop next week
Maths workshop in two weeks

CPMSoc O-Week contest debrief 20/2/23 27 / 27

	Introduction
	Welcome

	Mathematics Solutions
	Quick Sum
	Drawing Aces
	Find a Function
	Triangular Edges
	Horrendously Complex
	Manhattan's Quadrilateral

	Programming Solutions
	Addition
	Binary Help
	Counting Rectangles
	Burger
	Gerrymandering
	Shapes
	Isaiah's Unsolved

	Thanks for coming!
	Food acquisition

