O-Week contest debrief

CPMSoc

Table of contents

1 Introduction
■ Welcome
2 Mathematics Solutions
■ Quick Sum

- Drawing Aces
- Find a Function
- Triangular Edges
- Horrendously Complex

■ Manhattan's Quadrilateral

3 Programming Solutions

- Addition
- Binary Help
- Counting Rectangles
- Burger
- Gerrymandering
- Shapes

Welcome

■ Join our subcom!
■ Mathematics workshops will (probably) run every odd-numbered week (1, 3, 5, ...)
■ Programming ones are every other week

- Slides will be uploaded on website (unswcpmsoc.com)

■ Competitive maths ain't so competitive!

Quick Sum

■ Quick! Sum!

- If you didn't add all the numbers within the first second of the contest starting you missed out on winning a free lamborghini. L
$\square \frac{2023(2023+1)}{2}$

Drawing Aces

■ If 4 of the cards have hearts suits, then one of the aces must be a hearts card
\square Probability that one ace is a heart is $\frac{1}{2}$
■ Probability three more hearts are selected is $\frac{12}{48} \times \frac{11}{47} \times \frac{10}{45}$ (exclude all aces since we've already selected one as a heart)

- Thus total probability is $\frac{1}{2} \times \frac{12}{48} \times \frac{11}{47} \times \frac{10}{46}=\frac{55}{8648}$

Find a Function

■ Substitute $x=1: f(y)=f(1) y$
■ Let $f(1)=A$ for any real constant A.
■ Substituting back: $x \cdot A \cdot y-y \cdot A \cdot x=0$, which always holds.
■ So $f(x)=A x$ for any real constant A covers all solutions.

Triangular Edges

■ Let the number of triangles a vertex touches be its "degree".
■ Call the number of vertexes with degree $i n_{i}$, where $i \in\{1,2,3,4,5,6\}$
■ The total degree counts each triangle 3 times, so if there are n triangles, we have
$\square \sum_{i=1}^{6} i n_{i}=3 n$. Taking modulo 3 , we have the sum
■ $n_{1}+2 n_{2}+n_{4}+2 n_{5}=\left(n_{1}+n_{4}\right)+2\left(n_{2}+n_{5}\right)=2 x+y=0 \bmod 3$
\square So $2 x+y$ is divisible by 3 .

Horrendously Complex

$$
\frac{3 x^{2}+12 x+11}{(x+1)(x+2)(x+3)}=\frac{\frac{\mathrm{d}}{\mathrm{~d} x}((x+1)(x+2)(x+3))}{(x+1)(x+2)(x+3)}=\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3} .
$$

So,

$$
\begin{aligned}
& \sum_{i=1}^{7} \frac{3 \omega_{i}^{2}+12 \omega_{i}+11}{\left(\omega_{i}+1\right)\left(\omega_{i}+2\right)\left(\omega_{i}+3\right)} \\
= & \sum_{i=1}^{7}\left(\frac{1}{\omega_{i}+1}+\frac{1}{\omega_{i}+2}+\frac{1}{\omega_{i}+3}\right) \\
= & \sum_{i=1}^{7} \frac{1}{\omega_{i}+1}+\sum_{i=1}^{7} \frac{1}{\omega_{i}+2}+\sum_{i=1}^{7} \frac{1}{\omega_{i}+3} \\
= & \frac{7 \times 1^{6}}{1^{7}+1}+\frac{7 \times 2^{6}}{2^{7}+1}+\frac{7 \times 3^{6}}{3^{7}+1}=\frac{2626393}{282252}
\end{aligned}
$$

Manhattan's Quadrilateral

■ Sample two points from the red edge and two from the blue
\square Shape is concave, so perimeter is
$2 \times$ width $+2 \times$ height $=2 \times(\max$ blue $-\min r e d)+2 \times(\max$ all $-\min$ all $)$
■ Calculating expected values is linear, so just take average of each of these values
$■$ Average maximum of n points is $\frac{n}{n+1}$ (find CDF, get PDF, calculate $\int_{0}^{1} x P(x) \mathrm{d} x$)

- So answer is $2 \times\left(\frac{5}{3}-\frac{1}{3}\right)+2 \times\left(\frac{4}{5}-\frac{1}{5}\right)=\frac{58}{15}$

Addition

■ This one was also a Lamborghini if you solved it in the first second of the contest.

Binary Help

■ Just check every ascending power of 2 until you find one that is larger than N
■ This is only $O(\log N)$, since N was only up to $10^{18} \approx 2^{60}$
$■$ Also could use binary, check the most significant bit -> then just set next bit to 1 and all other bits to 0

- $2^{\left\lceil\log _{2}(N+1)\right\rceil}$

Counting Rectangles

■ Brute force - count every possible top, left, bottom, right edge of rectangle $\left(O\left(W^{2} H^{2}\right)\right)$

Counting Rectangles

- Pick any possible left and right edge $\left(\frac{W(W+1)}{2}\right)$, then any possible top and bottom edge ($\frac{H(H+1)}{2}$)
- All combinations of these $=\frac{W(W+1) H(H+1)}{4}$

Burger

■ Can be solved either mathematically or programmatically

- Both solutions require some maths

Burger

AC

Burger

Burger

Burger

Burger

$$
(2 r)^{2} \leq(H-2 r)^{2}+(W-2 r)^{2}
$$

Burger

$$
d^{2} \leq(H-d)^{2}+(W-d)^{2}
$$

Burger Maths Solution

$$
d^{2} \leq(H-d)^{2}+(W-d)^{2}
$$

Burger Maths Solution

$$
\begin{aligned}
& d^{2} \leq(H-d)^{2}+(W-d)^{2} \\
& d^{2} \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2}
\end{aligned}
$$

Burger Maths Solution

$$
\begin{aligned}
d^{2} & \leq(H-d)^{2}+(W-d)^{2} \\
d^{2} & \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d H-2 d W+d^{2}
\end{aligned}
$$

Burger Maths Solution

$$
\begin{aligned}
d^{2} & \leq(H-d)^{2}+(W-d)^{2} \\
d^{2} & \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d H-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d(H+W)+d^{2}
\end{aligned}
$$

Burger Maths Solution

$$
\begin{aligned}
d^{2} & \leq(H-d)^{2}+(W-d)^{2} \\
d^{2} & \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d H-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 H W-2 d(H+W)+d^{2}
\end{aligned}
$$

Burger Maths Solution

$$
\begin{aligned}
d^{2} & \leq(H-d)^{2}+(W-d)^{2} \\
d^{2} & \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d H-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 H W-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 d(H+W)+d^{2}
\end{aligned}
$$

Burger Maths Solution

$$
\begin{aligned}
d^{2} & \leq(H-d)^{2}+(W-d)^{2} \\
d^{2} & \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d H-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 H W-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 d(H+W)+d^{2} \\
2 H W & \leq(H+W-d)^{2}
\end{aligned}
$$

Burger Maths Solution

$$
\begin{aligned}
d^{2} & \leq(H-d)^{2}+(W-d)^{2} \\
d^{2} & \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d H-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 H W-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 d(H+W)+d^{2} \\
2 H W & \leq(H+W-d)^{2} \\
\sqrt{2 H W} & \leq H+W-d
\end{aligned}
$$

Burger Maths Solution

$$
\begin{aligned}
d^{2} & \leq(H-d)^{2}+(W-d)^{2} \\
d^{2} & \leq H^{2}-2 d H+d^{2}+W^{2}-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d H-2 d W+d^{2} \\
0 & \leq H^{2}+W^{2}-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 H W-2 d(H+W)+d^{2} \\
0 & \leq(H+W)^{2}-2 d(H+W)+d^{2} \\
2 H W & \leq(H+W-d)^{2} \\
\sqrt{2 H W} & \leq H+W-d \\
d & \leq H+W-\sqrt{2 H W}
\end{aligned}
$$

Burger Programming Solution

$$
(H-d)^{2}+(W-d)^{2} \geq d^{2}
$$

Burger Programming Solution

$$
(H-d)^{2}+(W-d)^{2} \geq d^{2}
$$

Binary Search!

Burger Programming Solution

```
def can_fit(d, W, H):
```

 if \(d>W\) or \(d>H\) :
 return False
 elif \(d * * 2>(\mathrm{W}-\mathrm{d}) * * 2+(\mathrm{H}-\mathrm{d}) * * 2\) :
 return False
 else:
 return True
 $I, r=1, \max (W, H)+1$
while $r-\mid>1$:
$m=(1+r) / / 2$
if can_fit $(m, W, H): I=m$
else: $r=m$
print(I)

Gerrymandering

- A modified version of maximum subarray sum, also called largest sum contiguous subarray
- Observation: when checking A, use a subarray sum by setting all voters for A to be 1 and all voters for B to be -1
- Two pointer technique or Kadane's algorithm to find largest sum for A and B

Gerrymandering

```
def best_margin(array, cand):
```

 best, curr_sum \(=0,0\)
 for vote in array:
 if vote == cand:
 curr_sum += 1
 else:
 curr_sum -= 1
 best \(=\max (\) best, curr_sum)
 curr_sum = max (curr_sum , 0)
 return best
 a = best_margin (array, 'A')
$b=b e s t _m a r g i n(a r r a y, ~ ' B ')$
if $a>b: p r i n t(' A ')$
elif $a<b: p r i n t(' B ')$
else: print('BOTH')
print (max (a, b))

Shapes

The key to this question is making observations.
First here are the rules:

- The shape must be convex. This means that everything between two filled squares are also filled. (1)
■ The shape is vertically and horizontally symmetric (2)
■ The shape must be exactly a height of H and a width of W. (3)

Shapes

Shapes

Shapes

Shapes

Shapes

Shapes

ATC CLUBS

Shapes

Shapes

ATC

R	
Bammanna	

Shapes

Shapes

ATC

Shapes

ATC CLUBS

Shapes

Shapes

a_right [0][0] = 1
for i in range $(R+1)$:
for j in range $(C+1)$:

$$
\text { if } j>0:
$$

a_right [i][j] = (a_right[i][j-1] + a_down[i][j-1]) \% mod

$$
\text { b_right }[i][j]=\left(b _d o w n[i][j-1]\right) \% \bmod
$$

$$
\text { if } \overline{\mathrm{i}}>0 \text { : }
$$

$$
\text { a_down }[i][j]=\left(a _r i g h t[i-1][j]\right) \% \bmod
$$

$$
\text { b_down }[i][j]=\left(a _d o w n[i-1][j]+\text { b_right }[i-1][j]+\text { b_down }[i-1][j]\right)
$$

```
def solve(r, c):
```

return (a_right[r][c] + a_down[r][c] + b_right[r][c] + b_down[r][c]) \%m print(solve (R, C))

Isaiah's Unsolved

For simplicity, number the nodes of the DAG according to their toplogical ordering so that the adjacency matrix is an upper triangular matrix. Let A be the adjacency matrix of the DAG, e be a column vector of n 1's and e^{T} be its transpose. Then, the sum of matrix entries is $e^{T} * A * e$. Note that A is nilpotent iff graph is acyclic, so let k be an integer such that $A^{t}=0$.
Then $\left.e(G)-o(G)=-e^{T} * A^{0} * e+e^{T} * A^{1} * e-\ldots+(-1)^{t} * e^{T} * A^{(} t-1\right) * e$. Since matrix multiplication is distributive, this equals: $e^{T} *\left(-A^{0}+A-A^{2}+\ldots+(-1)^{t} * A^{(t-1)}\right) * e$. The middle part is a geometric series with matrices, which we can derive a formula for as long as $A+I$ is invertible. Note that, because our construction, $A+I$ is also upper triangular, and has 1's along its diagonals, so it's invertible (though this applies generally for any $A+I$ where A is nilpotent). Thus, $e(G)-o(G)=e^{T} *\left(-(A+I)^{-1}\right) * e$.
For simplicity, let's try and maximise/minimise the sum of entries of $(A+I)^{-1}$ (so now we are maximising/minimising $o(G)-e(G))$.
We can find the inverse matrix by performing row operations to transform

Isaiah's Unsolved

$(\mathrm{A}+\mathrm{I} \mid \mathrm{I})$ into $\left(\mathrm{I} \mid(\mathrm{A}+\mathrm{I})^{-1}\right)$.Realisethat, because $\mathrm{A}+$
Iisaninvertibleuppertriangularmatrixof0'sand1'sonly, wecandescribethisbythe followingal. foreachrow, starting fromthebottomandgoingtothetop, checkallcolumnscontaininga1exclud rowc $_{1}$, rowr - rowc $_{2}, \ldots$, rowr - rowc $_{k}$).
Since all we care about is the sum of matrix entries, we can reduce this to only thinking about the sums of values on each row:
Starting with an array V of n 1 's ($[1,1, \ldots, 1]$), from $\mathrm{i}=1$ to n (1-indexing), we may choose to perform $\mathrm{V}[i]-=\mathrm{V}[j]$ for unique values of j, where $1<=j<i$.
If we subtract by a net positive value, we might as well subtract the maximum possible amount we can for the sake of adding more value to our maximisation/minimisation later on, which will be the sum of all positive values, and similarly with a net negative value, which will be the sum of all negative values.
Therefore, we can reduce this problem further to considering two variables x, y (which start of as 0), where x is the sum of positive terms and y is the sum of negative terms, and in each of n turns, we can choose to add $y+1$ to x or $x-1$ to y. for $n<=4$, programming this the (min max) seem to he (for $م(G)-e(G)$ note $e(G)-0(G))$ (1 1) (1 2) (1

Isaiah's unsolved

, 3), (0,4) and I'm guessing the proof for the last step (where you show the maximum/minimum value of the x, y recurrence relation) involves saying that, after a certain point, the best way to "grow" x and y is by alternating which one you add to (maybe up until a number of steps?), since, excluding the constant factors of adding 1 and -1 , this is just the fibonacci sequence, and when $x-y$ is calculated, you get something along those lines? idk anyway plugging in $n \geq 5$ into oeis shows the values are (probably):

$$
\left(-F_{n-1}+2, F_{n-1}+2\right)
$$

where F_{n} is the nth Fibonacci number (where the first 5 are $1,1,2,3,5$)

Attendance form :D

Further events

Please join us for:
■ Social session tomorrow
■ Programming workshop next week
■ Maths workshop in two weeks

