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CPMSOCWelcome
Join our subcom!
Mathematics workshops will (probably) run every odd-numbered week (1, 3, 5, ...)
Programming ones are every other week
Slides will be uploaded on website (unswcpmsoc.com)
Competitive maths ain’t so competitive!
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CPMSOCQuick Sum
Quick! Sum!
If you didn’t add all the numbers within the first second of the contest starting you
missed out on winning a free lamborghini. L
2023(2023+1)

2
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CPMSOCDrawing Aces
If 4 of the cards have hearts suits, then one of the aces must be a hearts card
Probability that one ace is a heart is 1

2

Probability three more hearts are selected is 12
48 × 11

47 × 10
45 (exclude all aces since

we’ve already selected one as a heart)
Thus total probability is 1

2 × 12
48 × 11

47 × 10
46 = 55

8648

CPMSoc O-Week contest debrief 20/2/23 4 / 27



CPMSOCFind a Function
Substitute x = 1: f(y) = f(1)y

Let f(1) = A for any real constant A.
Substituting back: x ·A · y − y ·A · x = 0, which always holds.
So f(x) = Ax for any real constant A covers all solutions.
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CPMSOCTriangular Edges
Let the number of triangles a vertex touches be its "degree".
Call the number of vertexes with degree i ni, where i ∈ {1, 2, 3, 4, 5, 6}
The total degree counts each triangle 3 times, so if there are n triangles, we have∑6

i=1 ini = 3n. Taking modulo 3, we have the sum
n1 + 2n2 + n4 + 2n5 = (n1 + n4) + 2(n2 + n5) = 2x+ y = 0 mod 3

So 2x+ y is divisible by 3.
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CPMSOCHorrendously Complex

3x2 + 12x+ 11

(x+ 1)(x+ 2)(x+ 3)
=

d
dx ((x+ 1)(x+ 2)(x+ 3))

(x+ 1)(x+ 2)(x+ 3)
=

1

x+ 1
+

1

x+ 2
+

1

x+ 3
.

So,
7∑

i=1

3ω2
i + 12ωi + 11

(ωi + 1)(ωi + 2)(ωi + 3)

=

7∑
i=1

(
1

ωi + 1
+

1

ωi + 2
+

1

ωi + 3

)

=

7∑
i=1

1

ωi + 1
+

7∑
i=1

1

ωi + 2
+

7∑
i=1

1

ωi + 3

=
7× 16

17 + 1
+

7× 26

27 + 1
+

7× 36

37 + 1
=

2626393

282252
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CPMSOCManhattan’s Quadrilateral

Sample two points from the red edge and two from the blue
Shape is concave, so perimeter is
2× width + 2× height = 2× (max blue − min red) + 2× (max all − min all)
Calculating expected values is linear, so just take average of each of these values
Average maximum of n points is n

n+1 (find CDF, get PDF, calculate
∫ 1
0 xP (x)dx)

So answer is 2× (53 − 1
3) + 2× (45 − 1

5) =
58
15
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CPMSOCAddition
This one was also a Lamborghini if you solved it in the first second of the contest.
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CPMSOCBinary Help
Just check every ascending power of 2 until you find one that is larger than N

This is only O(logN), since N was only up to 1018 ≈ 260

Also could use binary, check the most significant bit -> then just set next bit to 1 and
all other bits to 0
2⌈log2 (N+1)⌉
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CPMSOCCounting Rectangles
Brute force - count every possible top, left, bottom, right edge of rectangle (O(W 2H2))
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CPMSOCCounting Rectangles
Pick any possible left and right edge (W (W+1)

2 ), then any possible top and bottom
edge (H(H+1)

2 )

All combinations of these = W (W+1)H(H+1)
4
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CPMSOCBurger
Can be solved either mathematically or programmatically
Both solutions require some maths
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CPMSOCBurger
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CPMSOCBurger
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CPMSOCBurger

(2r)2 ≤ (H − 2r)2 + (W − 2r)2
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CPMSOCBurger

d2 ≤ (H − d)2 + (W − d)2
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CPMSOCBurger Maths Solution

d2 ≤ (H − d)2 + (W − d)2

d2 ≤ H2 − 2dH + d2 +W 2 − 2dW + d2

0 ≤ H2 +W 2 − 2dH − 2dW + d2

0 ≤ H2 +W 2 − 2d(H +W ) + d2

0 ≤ (H +W )2 − 2HW − 2d(H +W ) + d2

0 ≤ (H +W )2 − 2d(H +W ) + d2

2HW ≤ (H +W − d)2
√
2HW ≤ H +W − d

d ≤ H +W −
√
2HW
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CPMSOCBurger Programming Solution

(H − d)2 + (W − d)2 ≥ d2
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CPMSOCBurger Programming Solution

(H − d)2 + (W − d)2 ≥ d2

Binary Search!
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CPMSOCBurger Programming Solution
def c a n _ f i t ( d , W, H) :

i f d > W or d > H:
return False

e l i f d**2 > (W−d ) * * 2 + (H−d ) * * 2 :
return False

else :
return True

l , r = 1 , max(W, H) + 1
while r − l > 1 :

m = ( l + r ) / / 2
i f c a n _ f i t (m, W, H) : l = m
else : r = m

pr in t ( l )
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CPMSOCGerrymandering
A modified version of maximum subarray sum, also called largest sum contiguous
subarray
Observation: when checking A, use a subarray sum by setting all voters for A to be 1
and all voters for B to be −1

Two pointer technique or Kadane’s algorithm to find largest sum for A and B

CPMSoc O-Week contest debrief 20/2/23 18 / 27



CPMSOCGerrymandering
def best_margin ( array , cand ) :

best , curr_sum = 0 , 0
for vote in ar ray :

i f vote == cand :
curr_sum += 1

else :
curr_sum −= 1

best = max( best , curr_sum )
curr_sum = max( curr_sum , 0)

return best

a = best_margin ( array , ’A ’ )
b = best_margin ( array , ’B ’ )
i f a > b : pr in t ( ’A ’ )
e l i f a < b : pr in t ( ’B ’ )
else : pr in t ( ’BOTH ’ )
pr in t (max( a , b ) )
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CPMSOCShapes
The key to this question is making observations.
First here are the rules:

The shape must be convex. This means that everything between two filled squares
are also filled. (1)
The shape is vertically and horizontally symmetric (2)
The shape must be exactly a height of H and a width of W. (3)
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CPMSOCShapes
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CPMSOCShapes
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CPMSOCShapes
a _ r i g h t [ 0 ] [ 0 ] = 1

for i in range (R+1) :
for j in range (C+1) :

i f j > 0 :
a _ r i g h t [ i ] [ j ] = ( a _ r i g h t [ i ] [ j −1] + a_down [ i ] [ j −1 ] ) % mod
b _ r i g h t [ i ] [ j ] = ( b_down [ i ] [ j −1 ] ) % mod

i f i > 0 :
a_down [ i ] [ j ] = ( a _ r i g h t [ i − 1 ] [ j ] ) % mod
b_down [ i ] [ j ] = ( a_down [ i − 1 ] [ j ] + b _ r i g h t [ i − 1 ] [ j ] + b_down [ i − 1 ] [ j ] ) % mod

def solve ( r , c ) :
return ( a _ r i g h t [ r ] [ c ] + a_down [ r ] [ c ] + b _ r i g h t [ r ] [ c ] + b_down [ r ] [ c ] ) % mod

pr in t ( so lve (R, C) )
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CPMSOCIsaiah’s Unsolved
For simplicity, number the nodes of the DAG according to their toplogical ordering so that
the adjacency matrix is an upper triangular matrix. Let A be the adjacency matrix of the
DAG, e be a column vector of n 1’s and eT be its transpose. Then, the sum of matrix
entries is eT ∗A ∗ e. Note that A is nilpotent iff graph is acyclic, so let k be an integer such
that At = 0.
Then e(G)− o(G) = −eT ∗A0 ∗ e+ eT ∗A1 ∗ e− ...+ (−1)t ∗ eT ∗A(t− 1) ∗ e. Since matrix
multiplication is distributive, this equals: eT ∗ (−A0 +A−A2 + ...+ (−1)t ∗A(t− 1)) ∗ e.
The middle part is a geometric series with matrices, which we can derive a formula for as
long as A+ I is invertible. Note that, because our construction, A+ I is also upper
triangular, and has 1’s along its diagonals, so it’s invertible (though this applies generally
for any A+ I where A is nilpotent). Thus, e(G)− o(G) = eT ∗ (−(A+ I)−1) ∗ e.
For simplicity, let’s try and maximise/minimise the sum of entries of (A+ I)−1 (so now we
are maximising/minimising o(G)− e(G)).
We can find the inverse matrix by performing row operations to transform
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CPMSOCIsaiah’s Unsolved
(A+ I | I) into (I | (A + I)−1).Realisethat, becauseA+
Iisaninvertibleuppertriangularmatrixof0′sand1′sonly, wecandescribethisbythefollowingalgorithm :
foreachrow, startingfromthebottomandgoingtothetop, checkallcolumnscontaininga1excludingthediagonalentry(saythesearecolumnsc1, c2, ..., ck)andsubtracttherowswithnumbersequaltothosecolumnnumbersfromthiscurrentrow(soperformrowr−
rowc1, rowr − rowc2, ..., rowr − rowck).
Since all we care about is the sum of matrix entries, we can reduce this to only thinking
about the sums of values on each row:
Starting with an array V of n 1’s ([1, 1, ..., 1]), from i = 1 to n (1-indexing), we may choose
to perform V[i] -= V[j] for unique values of j, where 1 <= j < i.
If we subtract by a net positive value, we might as well subtract the maximum possible
amount we can for the sake of adding more value to our maximisation/minimisation later
on, which will be the sum of all positive values, and similarly with a net negative value,
which will be the sum of all negative values.
Therefore, we can reduce this problem further to considering two variables x, y (which
start of as 0), where x is the sum of positive terms and y is the sum of negative terms, and
in each of n turns, we can choose to add y + 1 to x or x - 1 to y. for n <= 4, programming
this, the (min, max) seem to be (for o(G) - e(G), not e(G) - o(G)) (1, 1), (1, 2), (1
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CPMSOCIsaiah’s unsolved
, 3), (0, 4) and I’m guessing the proof for the last step (where you show the
maximum/minimum value of the x, y recurrence relation) involves saying that, after a
certain point, the best way to "grow" x and y is by alternating which one you add to
(maybe up until a number of steps?), since, excluding the constant factors of adding 1 and
-1, this is just the fibonacci sequence, and when x - y is calculated, you get something
along those lines? idk anyway plugging in n ≥ 5 into oeis shows the values are (probably):

(−Fn−1 + 2, Fn−1 + 2),

where Fn is the nth Fibonacci number (where the first 5 are 1, 1, 2, 3, 5)
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CPMSOCAttendance form :D
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CPMSOCFurther events
Please join us for:

Social session tomorrow
Programming workshop next week
Maths workshop in two weeks
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